Abstract We analyze three substorms that occur on (1) 9 March 2008 05:14 UT, (2) 26 February 2008 04:05 UT, and (3) 26 February 2008 04:55 UT. Using ACE solar wind velocity and interplanetary magnetic fieldBzvalues, we calculate the rectified (southwardBz) solar wind voltage propagated to the magnetosphere. The solar wind conditions for the two events were vastly different, 300 kV for 9 March 2008 substorm, compared to 50 kV for 26 February 2008. The voltage is input to a nonlinear physics‐based model of the magnetosphere called WINDMI. The output is the westward auroral electrojet current which is proportional to the auroral electrojet (AL) index from World Data Center for Geomagnetism Kyoto and the SuperMAG auroral electrojet index (SML). Substorm onset times are obtained from the superMAG substorm database, Pu et al. (2010,https://doi.org/10.1029/2009JA014217), Lui (2011,https://doi.org/10.1029/2010JA016078) and synchronized to Time History of Events and Macroscale Interactions during Substorms satellite data. The timing of onset, model parameters, and intermediate state space variables are analyzed. The model onsets occurred about 5 to 10 min earlier than the reported onsets. Onsets occurred when the geotail current in the WINDMI model reached a critical threshold of 6.2 MA for the 9 March 2008 event, while, in contrast, a critical threshold of 2.1 MA was obtained for the two 26 February 2008 events. The model estimates 1.99 PJ of total energy transfer during the 9 March 2008 event, with 0.95 PJ deposited in the ionosphere. The smaller events on 26 February 2008 resulted in a total energy transfer of 0.37 PJ according to the model, with 0.095 PJ deposited in the ionosphere.
more »
« less
A Statistical Study of Auroral Medium Frequency Bursts and Anomalous Incoherent Scatter Radar Echoes
Abstract Different types of incoherent scatter radar (ISR) echoes are observed associated with aurora, including some which have been interpreted as signatures of cavitating Langmuir turbulence (CLT). Akbari et al. (2013)https://doi.org/10.1002/jgra.50314discussed two instances of correlation between CLT and naturally occurring radio emissions called medium frequency burst (MFB) which occur at substorm onsets. Based on that observation, radio detections of MFB from Toolik Lake Observatory have been applied to investigate occurrence of CLT in ISR data from Poker Flat Incoherent Scatter Radar and their possible correlation with MFB. Of 131 MFB events, 25 occurred within 15 min of an ISR echo detection, compared to 6 of 116 intervals of a control set with similar local time and seasonal distribution. The difference is significant at the 10−4level, suggesting that ISR echoes are more probable during substorm onset times identified using MFB as a proxy. However, only four observed ISR echoes coincident with one MFB event showed both specific characteristics consistent with CLT. Furthermore, investigation of the angle of arrival of MFB suggests that the electromagnetic emissions do not originate from the plasma volume where the ISR detects the echoes. The small number of coincident ISR echoes and MFB is expected due to the different volumes in which the emissions and the echoes are detected. 50% of the MFB events occurred within 20 min of a substorm onset independently identified versus 8% of the control set intervals, confirming the correlation of MFB with substorm onsets.
more »
« less
- Award ID(s):
- 1915058
- PAR ID:
- 10368241
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Radio Science
- Volume:
- 57
- Issue:
- 6
- ISSN:
- 0048-6604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission.more » « less
-
Abstract Low‐frequency earthquakes are a seismic manifestation of slow fault slip. Their emergent onsets, low amplitudes, and unique frequency characteristics make these events difficult to detect in continuous seismic data. Here, we train a convolutional neural network to detect low‐frequency earthquakes near Parkfield, CA using the catalog of Shelly (2017),https://doi.org/10.1002/2017jb014047as training data. We explore how varying model size and targets influence the performance of the resulting network. Our preferred network has a peak accuracy of 85% and can reliably pick low‐frequency earthquake (LFE) S‐wave arrival times on single station records. We demonstrate the abilities of the network using data from permanent and temporary stations near Parkfield, and show that it detects new LFEs that are not part of the Shelly (2017),https://doi.org/10.1002/2017jb014047catalog. Overall, machine‐learning approaches show great promise for identifying additional low‐frequency earthquake sources. The technique is fast, generalizable, and does not require sources to repeat.more » « less
-
Abstract Obtaining meteoroid mass from head echo radar cross section depends on the assumed plasma density distribution around the meteoroid. An analytical model presented in Dimant and Oppenheim (2017a,https://doi.org/10.1002/2017JA023960; 2017b,https://doi.org/10.1002/2017JA023963) and simulation results presented in Sugar et al. (2018,https://doi.org/10.1002/2018JA025265) suggest the plasma density distribution is significantly different than the spherically symmetric Gaussian distribution used to calculate meteoroid masses in many previous studies. However, these analytical and simulation results ignored the effects of electric and magnetic fields and assumed quasi‐neutrality. This paper presents results from the first particle‐in‐cell simulations of head echo plasma that include electric and magnetic fields. The simulations show that the fields change the ion density distribution by less than ∼2% in the meteor head echo region, but the electron density distribution changes by up to tens of percent depending on the location, electron energies, and magnetic field orientation with respect to the meteoroid path.more » « less
-
Abstract E‐region models have traditionally underestimated the ionospheric electron density. We believe that this deficiency can be remedied by using high‐resolution photoabsorption and photoionization cross sections in the models. Deep dips in the cross sections allow solar radiation to penetrate deeper into the E‐region producing additional ionization. To validate our concept, we perform a study of model electron density profiles (EDPs) calculated using the Atmospheric Ultraviolet Radiance Integrated Code (AURIC; D. Strickland et al., 1999,https://doi.org/10.1016/s0022-4073(98)00098-3) in the E‐region of the terrestrial ionosphere. We compare AURIC model outputs using new high‐resolution photoionization and photoabsorption cross sections, and solar spectral irradiances during low solar activity with incoherent scatter radar (ISR) measurements from the Arecibo and Millstone Hills observatories, Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC‐1) observations, and outputs from empirical models (IRI‐2016 and FIRI‐2018). AURIC results utilizing the new high‐resolution cross sections reveal a significant difference to model outputs calculated with the low‐resolution cross sections currently used. Analysis of AURIC EDPs using the new high‐resolution data indicate fair agreement with ISR measurements obtained at various times at Arecibo but very good agreement with Millstone Hills ISR observations from ∼96–140 km. However, discrepancies in the altitude of the E‐region peak persist. High‐resolution AURIC calculations are in agreement with COSMIC‐1 observations and IRI‐2016 model outputs between ∼105 and 140 km while FIRI‐2018 outputs underestimate the EDP in this region. Overall, AURIC modeling shows increased E‐region electron densities when utilizing high‐resolution cross sections and high‐resolution solar irradiances, and are likely to be the key to resolving the long standing data‐model discrepancies.more » « less
An official website of the United States government
