skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Phage–bacterial contig association prediction with a convolutional neural network
Abstract Motivation

Phage–host associations play important roles in microbial communities. But in natural communities, as opposed to culture-based lab studies where phages are discovered and characterized metagenomically, their hosts are generally not known. Several programs have been developed for predicting which phage infects which host based on various sequence similarity measures or machine learning approaches. These are often based on whole viral and host genomes, but in metagenomics-based studies, we rarely have whole genomes but rather must rely on contigs that are sometimes as short as hundreds of bp long. Therefore, we need programs that predict hosts of phage contigs on the basis of these short contigs. Although most existing programs can be applied to metagenomic datasets for these predictions, their accuracies are generally low. Here, we develop ContigNet, a convolutional neural network-based model capable of predicting phage–host matches based on relatively short contigs, and compare it to previously published VirHostMatcher (VHM) and WIsH.

Results

On the validation set, ContigNet achieves 72–85% area under the receiver operating characteristic curve (AUROC) scores, compared to the maximum of 68% by VHM or WIsH for contigs of lengths between 200 bps to 50 kbps. We also apply the model to the Metagenomic Gut Virus (MGV) catalogue, a dataset containing a wide range of draft genomes from metagenomic samples and achieve 60–70% AUROC scores compared to that of VHM and WIsH of 52%. Surprisingly, ContigNet can also be used to predict plasmid-host contig associations with high accuracy, indicating a similar genetic exchange between mobile genetic elements and their hosts.

Availability and implementation

The source code of ContigNet and related datasets can be downloaded from https://github.com/tianqitang1/ContigNet.

 
more » « less
Award ID(s):
2125142
NSF-PAR ID:
10368273
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
38
Issue:
Supplement_1
ISSN:
1367-4803
Format(s):
Medium: X Size: p. i45-i52
Size(s):
["p. i45-i52"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although the use of long-read sequencing improves the contiguity of assembled viral genomes compared to short-read methods, assembling complex viral communities remains an open problem. We describe the viralFlye tool for identification and analysis of metagenome-assembled viruses in long-read assemblies. We show it significantly improves viral assemblies and demonstrate that long-reads result in a much larger array of predicted virus-host associations as compared to short-read assemblies. We demonstrate that the identification of novel CRISPR arrays in bacterial genomes from a newly assembled metagenomic sample provides information for predicting novel hosts for novel viruses.

     
    more » « less
  2. Background

    Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enablingde novoassembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes.

    Methods

    Here we evaluatede novoassembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes.

    Results

    Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes.

    Conclusions

    PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improvedde novogenome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

     
    more » « less
  3. Abstract Motivation

    Metagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample.

    Results

    We develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs.

    Availability and implementation

    HiFine is available at https://github.com/dyxstat/HiFine.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract

    The introduction of high-throughput chromosome conformation capture (Hi-C) into metagenomics enables reconstructing high-quality metagenome-assembled genomes (MAGs) from microbial communities. Despite recent advances in recovering eukaryotic, bacterial, and archaeal genomes using Hi-C contact maps, few of Hi-C-based methods are designed to retrieve viral genomes. Here we introduce ViralCC, a publicly available tool to recover complete viral genomes and detect virus-host pairs using Hi-C data. Compared to other Hi-C-based methods, ViralCC leverages the virus-host proximity structure as a complementary information source for the Hi-C interactions. Using mock and real metagenomic Hi-C datasets from several different microbial ecosystems, including the human gut, cow fecal, and wastewater, we demonstrate that ViralCC outperforms existing Hi-C-based binning methods as well as state-of-the-art tools specifically dedicated to metagenomic viral binning. ViralCC can also reveal the taxonomic structure of viruses and virus-host pairs in microbial communities. When applied to a real wastewater metagenomic Hi-C dataset, ViralCC constructs a phage-host network, which is further validated using CRISPR spacer analyses. ViralCC is an open-source pipeline available athttps://github.com/dyxstat/ViralCC.

     
    more » « less
  5. Abstract Background

    Many animals live in intimate associations with a species-rich microbiome. A key factor in maintaining these beneficial associations is fidelity, defined as the stability of associations between hosts and their microbiota over multiple host generations. Fidelity has been well studied in terrestrial hosts, particularly insects, over longer macroevolutionary time. In contrast, little is known about fidelity in marine animals with species-rich microbiomes at short microevolutionary time scales, that is at the level of a single host population. Given that natural selection acts most directly on local populations, studies of microevolutionary partner fidelity are important for revealing the ecological and evolutionary processes that drive intimate beneficial associations within animal species.

    Results

    In this study on the obligate symbiosis between the gutless marine annelidOlavius algarvensisand its consortium of seven co-occurring bacterial symbionts, we show that partner fidelity varies across symbiont species from strict to absent over short microevolutionary time. Using a low-coverage sequencing approach that has not yet been applied to microbial community analyses, we analysed the metagenomes of 80O. algarvensisindividuals from the Mediterranean and compared host mitochondrial and symbiont phylogenies based on single-nucleotide polymorphisms across genomes. Fidelity was highest for the two chemoautotrophic, sulphur-oxidizing symbionts that dominated the microbial consortium of allO. algarvensisindividuals. In contrast, fidelity was only intermediate to absent in the sulphate-reducing and spirochaetal symbionts with lower abundance. These differences in fidelity are likely driven by both selective and stochastic forces acting on the consistency with which symbionts are vertically transmitted.

    Conclusions

    We hypothesize that variable degrees of fidelity are advantageous forO. algarvensisby allowing the faithful transmission of their nutritionally most important symbionts and flexibility in the acquisition of other symbionts that promote ecological plasticity in the acquisition of environmental resources.

     
    more » « less