A variational framework for accelerated optimization was recently introduced on normed vector spaces and Riemannian manifolds in [1] and [2]. It was observed that a careful combination of time-adaptivity and symplecticity in the numerical integration can result in a significant gain in computational efficiency. It is however well known that symplectic integrators lose their near-energy preservation properties when variable time-steps are used. The most common approach to circumvent this problem involves the Poincaré transformation on the Hamiltonian side, and was used in [3] to construct efficient explicit algorithms for symplectic accelerated optimization. However, the current formulations of Hamiltonian variational integrators do not make intrinsic sense on more general spaces such as Riemannian manifolds and Lie groups. In contrast, Lagrangian variational integrators are well-defined on manifolds, so we develop here a framework for time-adaptivity in Lagrangian variational integrators and use the resulting geometric integrators to solve optimization problems on vector spaces and Lie groups.
more »
« less
Accelerated Optimization on Riemannian Manifolds via Discrete Constrained Variational Integrators
Abstract A variational formulation for accelerated optimization on normed vector spaces was recently introduced in Wibisono et al. (PNAS 113:E7351–E7358, 2016), and later generalized to the Riemannian manifold setting in Duruisseaux and Leok (SJMDS, 2022a). This variational framework was exploited on normed vector spaces in Duruisseaux et al. (SJSC 43:A2949–A2980, 2021) using time-adaptive geometric integrators to design efficient explicit algorithms for symplectic accelerated optimization, and it was observed that geometric discretizations which respect the time-rescaling invariance and symplecticity of the Lagrangian and Hamiltonian flows were substantially less prone to stability issues, and were therefore more robust, reliable, and computationally efficient. As such, it is natural to develop time-adaptive Hamiltonian variational integrators for accelerated optimization on Riemannian manifolds. In this paper, we consider the case of Riemannian manifolds embedded in a Euclidean space that can be characterized as the level set of a submersion. We will explore how holonomic constraints can be incorporated in discrete variational integrators to constrain the numerical discretization of the Riemannian Hamiltonian system to the Riemannian manifold, and we will test the performance of the resulting algorithms by solving eigenvalue and Procrustes problems formulated as optimization problems on the unit sphere and Stiefel manifold.
more »
« less
- Award ID(s):
- 1813635
- PAR ID:
- 10368289
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Nonlinear Science
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 0938-8974
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by recent developments in Hamiltonian variational principles, Hamiltonian variational integrators, and their applications such as to optimization and control, we present a new Type II variational approach for Hamiltonian systems, based on a virtual work principle that enforces the Type II boundary conditions through a combination of essential and natural boundary conditions; particularly, this approach allows us to define this variational principle intrinsically on manifolds. We first develop this variational principle on vector spaces and subsequently extend it to parallelizable manifolds, general manifolds, as well as to the infinite-dimensional setting. Furthermore, we provide a review of variational principles for Hamiltonian systems in various settings as well as their applications.more » « less
-
Geometric numerical integration has recently been exploited to design symplectic accelerated optimization algorithms by simulating the Bregman Lagrangian and Hamiltonian systems from the variational framework introduced by Wibisono et al. In this paper, we discuss practical considerations which can significantly boost the computational performance of these optimization algorithms and considerably simplify the tuning process. In particular, we investigate how momentum restarting schemes ameliorate computational efficiency and robustness by reducing the undesirable effect of oscillations and ease the tuning process by making time-adaptivity superfluous. We also discuss how temporal looping helps avoiding instability issues caused by numerical precision, without harming the computational efficiency of the algorithms. Finally, we compare the efficiency and robustness of different geometric integration techniques and study the effects of the different parameters in the algorithms to inform and simplify tuning in practice. From this paper emerge symplectic accelerated optimization algorithms whose computational efficiency, stability and robustness have been improved, and which are now much simpler to use and tune for practical applications.more » « less
-
From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold.more » « less
-
Abstract We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.more » « less
An official website of the United States government
