skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: Load‐Balancing Intense Physics Calculations to Embed Regionalized High‐Resolution Cloud Resolving Models in the E3SM and CESM Climate Models

We design a new strategy to load‐balance high‐intensity sub‐grid atmospheric physics calculations restricted to a small fraction of a global climate simulation's domain. We show why the current parallel load balancing infrastructure of Community Earth System Model (CESM) and Energy Exascale Earth Model (E3SM) cannot efficiently handle this scenario at large core counts. As an example, we study an unusual configuration of the E3SM Multiscale Modeling Framework (MMF) that embeds a binary mixture of two separate cloud‐resolving model grid structures that is attractive for low cloud feedback studies. Less than a third of the planet uses high‐resolution (MMF‐HR; sub‐km horizontal grid spacing) relative to standard low‐resolution (MMF‐LR) cloud superparameterization elsewhere. To enable MMF runs with Multi‐Domain cloud resolving models (CRMs), our load balancing theory predicts the most efficient computational scale as a function of the high‐intensity work's relative overhead and its fractional coverage. The scheme successfully maximizes model throughput and minimizes model cost relative to precursor infrastructure, effectively by devoting the vast majority of the processor pool to operate on the few high‐intensity (and rate‐limiting) high‐resolution (HR) grid columns. Two examples prove the concept, showing that minor artifacts can be introduced near the HR/low‐resolution CRM grid transition boundary on idealized aquaplanets, but are minimal in operationally relevant real‐geography settings. As intended, within the high (low) resolution area, our Multi‐Domain CRM simulations exhibit cloud fraction and shortwave reflection convergent to standard baseline tests that use globally homogenous MMF‐LR and MMF‐HR. We suggest this approach can open up a range of creative multi‐resolution climate experiments without requiring unduly large allocations of computational resources.

more » « less
Award ID(s):
1912130 1912134
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conventional low‐resolution (LR) climate models, including the Energy Exascale Earth System Model (E3SMv1), have well‐known biases in simulating the frequency, intensity, and timing of precipitation. Approaches to next‐generation E3SM, whether the high‐resolution (HR) or multiscale modeling framework (MMF) configuration, improve the simulation of the intensity and frequency of precipitation, but regional and seasonal deficiencies still exist. Here we apply a methodology to assess the contribution of tropical cyclones (TCs), extratropical cyclones (ETCs), and mesoscale convective systems (MCSs) to simulated precipitation in E3SMv1‐HR and E3SMv1‐MMF relative to E3SMv1‐LR. Across the United States, E3SMv1‐MMF provides the best simulation in terms of precipitation accumulation, frequency and intensity from MCSs and TCs compared to E3SMv1‐LR and E3SMv1‐HR. All E3SMv1 configurations overestimate precipitation amounts from and the frequency of ETCs over CONUS, with conventional E3SMv1‐LR providing the best simulation compared to observations despite limitations in precipitation intensity within these events.

    more » « less
  2. Abstract

    Improving the representation of precipitation in Earth system models is essential for understanding and projecting water cycle changes across scales. Progress has been hampered by persistent deficiencies in representing precipitation frequency, intensity, and timing in current models. Here, we analyze simulated US precipitation in the low‐resolution (LR) configuration of the Energy Exascale Earth System Model (E3SMv1) and assess the effect of two approaches to enhance the range of explicitly resolved scales: high‐resolution (HR) and multiscale modeling framework (MMF), which incur similar computational expense. Both E3SMv1‐MMF and E3SMv1‐HR capture more intense and less frequent precipitation on hourly and daily timescales relative to E3SMv1‐LR. E3SMv1‐HR improves the intensity over the Eastern and Northwestern US during winter, while E3SMv1‐MMF improves the intensity over the Eastern US and summer diurnal timing over the Central US. These results indicate that both methods may be needed to improve simulations of different storm types, seasons, and regions.

    more » « less
  3. Abstract

    The Walker circulation connects the regions with deep atmospheric convection in the western tropical Pacific to the shallow‐convection, tropospheric subsidence, and stratocumulus cloud decks of the eastern Pacific. The purpose of this study is to better understand the multi‐scale interactions between the Walker circulation, cloud systems, and interactive radiation. To do this we simulate a mock‐Walker Circulation with a full‐physics general circulation model using idealized boundary conditions. Our experiments use a doubly‐periodic domain with grid‐spacing of 1, 2, 25, and 100 km. We thus span the range from General Circulation Models (GCMs) to Cloud‐system Resolving Models (CRMs). Our model is derived from the Geophysical Fluid Dynamics Laboratory atmospheric GCM (AM4.0). We find substantial differences in the mock‐Walker circulation simulated by our GCM‐like and CRM‐like experiments. The CRM‐like experiments have more upper level clouds, stronger overturning circulations, and less precipitation. The GCM‐like experiments have a low‐level cloud fraction that is up to 20% larger. These differences leads to opposite atmospheric responses to changes in the longwave cloud radiative effect (LWCRE). Active LWCRE leads to increased precipitation for our GCMs, but decreased precipitation for our CRMs. The LWCRE leads to a narrower rising branch of the circulation and substantially increases the fraction of precipitation from the large‐scale cloud parameterization. This work demonstrates that a mock‐Walker circulation is a useful generalization of radiative convective equilibrium that includes a large‐scale circulation.

    more » « less
  4. Abstract

    The impact of increased model horizontal resolution on climate prediction performance is examined by comparing results from low-resolution (LR) and high-resolution (HR) decadal prediction simulations conducted with the Community Earth System Model (CESM). There is general improvement in global skill and signal-to-noise characteristics, with particularly noteworthy improvements in the eastern tropical Pacific, when resolution is increased from order 1° in all components to order 0.1°/0.25° in the ocean/atmosphere. A key advance in the ocean eddy-resolving HR system is the reduction of unrealistic warming in the Southern Ocean (SO) which we hypothesize has global ramifications through its impacts on tropical Pacific multidecadal variability. The results suggest that accurate representation of SO processes is critical for improving decadal climate predictions globally and for addressing longstanding issues with coupled climate model simulations of recent Earth system change.

    more » « less
  5. Abstract

    This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air‐sea interactions resolved by satellite observations (OBS) and by two climate model simulations run with eddy‐resolving high‐resolution (HR) and eddy‐parameterized low‐resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface temperature (SST) and turbulent heat flux (THF) variability and co‐variability over scales between 50 and 10,000 km and 60 days to 80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper‐ocean temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that the atmosphere dominates the SST and THF variability over zonal wavelengths larger than ∼2,000–2,500 km. In HR and OBS, ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius of deformation (R1, ∼600–2,000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF (and consequently of SST) than at larger scales. The ocean forcing also induces oscillations in SST and THF with periods ranging from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that driven by atmospheric forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.

    more » « less