The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism.
Eastern Asia is a prime location for the study of intracontinental tectono‐magmatic activity. For instance, the origin of widespread intraplate volcanism has been one of the most debated aspects of East Asian geological activity. Measurements of attenuation of teleseismic phases may provide additional constraints on the source regions of volcanism by sampling the upper mantle. This study uses data from three seismic arrays to constrain lateral variations in teleseismic
- PAR ID:
- 10368316
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 127
- Issue:
- 3
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract This study probes the lithosphere‐asthenosphere system beneath 155 Ma Pacific seafloor using teleseismic S‐to‐p receiver functions at the Pacific Lithosphere Anisotropy and Thickness Experiment project ocean‐bottom‐seismometers. Within the lithosphere, a significant velocity decrease at 33–50 km depth is observed. This mid‐lithospheric discontinuity is consistent with the velocity contrast between the background mantle and thin, trapped layers of crystallized partial melt, in the form of either dolomite or garnet granulite. These melts possibly originated from deeper asthenospheric melting beneath the flanks of spreading centers, and were transported within the cooling lithosphere. A positive velocity increase of 3%–6% is observed at 130–155 km depth and is consistent with the base of a layer with partial melt in the asthenosphere. A shear velocity decrease associated with the lithosphere‐asthenosphere boundary at 95–115 km depth is permitted by the data, but is not required.
-
Abstract The Salton Trough is one of the few regions on Earth where rifting is subaerial instead of submarine. We use the relative attenuation of teleseismic P phases recorded by the Salton Trough Seismic Imaging Project to investigate lithospheric and asthenospheric structures that form during extension. Map‐view analysis reveals stronger attenuation within the Salton Trough than in the adjacent provinces. We then construct tomographic models for variations in seismic attenuation with depth to discriminate between crustal and mantle signals with a damped least squares approach and a Bayesian approach. Synthetic tests show that models from damped least squares significantly underestimate the strength of attenuation and cannot separate crustal and mantle signals even if the tomographic models are allowed to be discontinuous at the lithosphere‐asthenosphere boundary (LAB). We show that a Bayesian approach overcomes these problems when inverting the same synthetic data sets and that shallow and deep signals are more clearly separated when imposing a discontinuity. With greater than 95% confidence, the results reveal first, that attenuation occurs primarily beneath the LAB; second, that the width of the attenuative region is narrower than the rift at 120 km depth; and third, that the strength of attenuation requires that the attenuative feature represents a melting‐column similar to those beneath mid‐ocean ridges. The narrow width of the melting column below the volatile‐free solidus is inconsistent with models for passive upwelling, where flow is driven only by rifting. Instead, we attribute the generation of incipient oceanic crust to mantle upwelling focused by buoyancy into a narrow diapir.
-
SUMMARY Within the Western Branch of the East African Rift (EAR), volcanism is highly localized, which is distinct from the voluminous magmatism seen throughout the Eastern Branch of the EAR. A possible mechanism for the source of melt beneath the EAR is decompression melting in response to lithospheric stretching. However, the presence of pre-rift magmatism in both branches of the EAR suggest an important role of plume-lithosphere interactions, which validates the presence of voluminous magmatism in the Eastern Branch, but not the localized magmatism in the Western Branch. We hypothesize that the interaction of a thermally heterogeneous asthenosphere (plume material) with the base of the lithosphere enables localization of deep melt sources beneath the Western Branch where there are sharp variations in lithospheric thickness. To test our hypothesis, we investigate sublithospheric mantle flow beneath the Rungwe Volcanic Province (RVP), which is the southernmost volcanic center in the Western Branch. We use seismically constrained lithospheric thickness and sublithospheric mantle structure to develop an instantaneous 3D thermomechanical model of tomography-based convection (TBC) with melt generation beneath the RVP using ASPECT. Shear wave velocity anomalies suggest excess temperatures reach ∼250 K beneath the RVP. We use the excess temperatures to constrain parameters for melt generation beneath the RVP and find that melt generation occurs at a maximum depth of ∼140 km. The TBC models reveal mantle flow patterns not evident in lithospheric modulated convection (LMC) that do not incorporate upper mantle constraints. The LMC model indicates lateral mantle flow at the base of the lithosphere over a longer interval than the TBC model, which suggests that mantle tractions from LMC might be overestimated. The TBC model provides higher melt fractions with a slightly displaced melting region when compared to LMC models. Our results suggest that upwellings from a thermally heterogeneous asthenosphere distribute and localize deep melt sources beneath the Western Branch in locations where there are sharp variations in lithospheric thickness. Even in the presence of a uniform lithospheric thickness in our TBC models, we still find a characteristic upwelling and melt localization beneath the RVP, which suggest that sublithospheric heterogeneities exert a dominant control on upper mantle flow and melt localization than lithospheric thickness variations. Our TBC models demonstrate the need to incorporate upper mantle constraints in mantle convection models and have global implications in that small-scale convection models without upper mantle constraints should be interpreted with caution.
-
Abstract Seismic deployments in the Alaska subduction zone provide dense sampling of the seismic wavefield that constrains thermal structure and subduction geometry. We measure
P andS attenuation from pairwise amplitude and phase spectral ratios for teleseismic body waves at 206 stations from regional and short‐term arrays. Parallel teleseismic travel‐time measurements provide information on seismic velocities at the same scale. These data show consistently low attenuation over the forearc of subduction systems and high attenuation over the arc and backarc, similar to local‐earthquake attenuation studies but at 10× lower frequencies. The pattern is seen both across the area of normal Pacific subduction in Cook Inlet, and across the Wrangell Volcanic Field where subduction has been debated. These observations confirm subduction‐dominated thermal regime beneath the latter. Travel times show evidence for subducting lithosphere much deeper than seismicity, while attenuation measurements appear mostly reflective of mantle temperature less than 150 km deep, depths where the mantle is closest to its solidus and where subduction‐related melting may take place. Travel times show strong delays over thick sedimentary basins. Attenuation signals show no evidence of absorption by basins, although some basins show signals anomalously rich in high‐frequency energy, with consequent negative apparent attenuation. Outside of basins, these data are consistent with mantle attenuation in the upper 220 km that is quantitatively similar to observations from surface waves and local‐earthquake body waves. Differences betweenP andS attenuation suggest primarily shear‐modulus relaxation. Overall the attenuation measurements show consistent, coherent subduction‐related structure, complementary to travel times.