skip to main content


Title: Correlations of Dark Matter, Gas, and Stellar Profiles in Dark Matter Halos
Abstract

Halos of similar mass and redshift exhibit a large degree of variability in their differential properties, such as dark matter, hot gas, and stellar mass density profiles. This variability is an indicator of diversity in the formation history of these dark matter halos that is reflected in the coupling of scatters about the mean relations. In this work, we show that the strength of this coupling depends on the scale at which halo profiles are measured. By analyzing the outputs of the IllustrisTNG hydrodynamical cosmological simulations, we report the radial- and mass-dependent couplings between the dark matter, hot gas, and stellar mass radial density profiles utilizing the population diversity in dark matter halos. We find that for the same mass halos, the scatters in the density of baryons and dark matter are strongly coupled at large scales (r>R200), but the coupling between gas and dark matter density profiles fades near the core of halos (r< 0.3R200). We then show that the correlation between halo profile and integrated quantities induces a radius-dependent additive bias in the profile observables of halos when halos are selected on properties other than their mass. We discuss the impact of this effect on cluster abundance and cross-correlation cosmology with multiwavelength cosmological surveys.

 
more » « less
NSF-PAR ID:
10368335
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 48
Size(s):
["Article No. 48"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions.

     
    more » « less
  2. Abstract

    We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro–Frenk–White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as −0.6 dex (about 5σaway) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as 1/r2for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks (Rmax) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large-Rmaxhalos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a ∼1/r2density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models.

     
    more » « less
  3. The mass profiles of massive dark matter halos are highly sensitive to the nature of dark matter and potential modifications of the theory of gravity on large scales. The Λ cold dark matter (CDM) paradigm makes strong predictions on the shape of dark matter halos and on the dependence of the shape parameters on halo mass, such that any deviation from the predicted universal shape would have important implications for the fundamental properties of dark matter. Here we use a set of 12 galaxy clusters with available deep X-ray and Sunyaev–Zel’dovich data to constrain the shape of the gravitational field with an unprecedented level of precision over two decades in radius. We introduce a nonparametric framework to reconstruct the shape of the gravitational field under the assumption of hydrostatic equilibrium and compare the resulting mass profiles to the expectations of Navarro–Frenk–White (NFW) and Einasto parametric mass profiles. On average, we find that the NFW profile provides an excellent description of the recovered mass profiles, with deviations of less than 10% over a wide radial range. However, there appears to be more diversity in the shape of individual profiles than can be captured by the NFW model. The average NFW concentration and its scatter agree very well with the prediction of the ΛCDM framework. For a subset of systems, we disentangle the gravitational field into the contribution of baryonic components (gas, brightest cluster galaxy, and satellite galaxies) and that of dark matter. The stellar content dominates the gravitational field inside ∼0.02 R 500 but is responsible for only 1–2% of the total gravitational field inside R 200 . The total baryon fraction reaches the cosmic value at R 200 and slightly exceeds it beyond this point, possibly indicating a mild level of nonthermal pressure support (10 − 20%) in cluster outskirts. Finally, the relation between observed and baryonic acceleration exhibits a complex shape that strongly departs from the radial acceleration relation in spiral galaxies, which shows that the aforementioned relation does not hold at the galaxy-cluster scale. 
    more » « less
  4. Abstract

    The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for.

     
    more » « less
  5. Abstract We derive the oblateness parameter q of the dark matter halo of a sample of gas-rich, face-on disk galaxies. We have assumed that the halos are triaxial in shape but their axes in the disk plane ( a and b ) are equal, so that q = c / a measures the halo flattening. We have used the H i velocity dispersion, derived from the stacked H i emission lines and the disk surface density, determined from the H i flux distribution, to determine the disk potential and the halo shape at the R 25 and 1.5 R 25 radii. We have applied our model to 20 nearby galaxies, of which six are large disk galaxies with M (stellar) > 10 10 , eight have moderate stellar masses, and six are low-surface-brightness dwarf galaxies. Our most important result is that gas-rich galaxies that have M (gas)/ M (baryons) > 0.5 have oblate halos ( q < 0.55), whereas stellar-dominated galaxies have a range of q values from 0.21 ± 0.07 in NGC4190 to 1.27 ± 0.61 in NGC5194. Our results also suggest a positive correlation between the stellar mass and the halo oblateness q , which indicates that galaxies with massive stellar disks have a higher probability of having halos that are spherical or slightly prolate, whereas low-mass galaxies have oblate halos ( q < 0.55). 
    more » « less