Abstract We report the discovery of Specter, a disrupted ultrafaint dwarf galaxy revealed by the H3 Spectroscopic Survey. We detected this structure via a pair of comoving metal-poor stars at a distance of 12.5 kpc, and further characterized it with Gaia astrometry and follow-up spectroscopy. Specter is a 25° × 1° stream of stars that is entirely invisible until strict kinematic cuts are applied to remove the Galactic foreground. The spectroscopic members suggest a stellar ageτ≳ 12 Gyr and a mean metallicity , with a significant intrinsic metallicity dispersion . We therefore argue that Specter is the disrupted remnant of an ancient dwarf galaxy. With an integrated luminosityMV≈ −2.6, Specter is by far the least-luminous dwarf galaxy stream known. We estimate that dozens of similar streams are lurking below the detection threshold of current search techniques, and conclude that spectroscopic surveys offer a novel means to identify extremely low surface brightness structures. 
                        more » 
                        « less   
                    
                            
                            Multiplicity Statistics of Stars in the Sagittarius Dwarf Spheroidal Galaxy: Comparison to the Milky Way
                        
                    
    
            Abstract We use time-resolved spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) to examine the distribution of radial velocity (RV) variations in 249 stars identified as members of the Sagittarius (Sgr) dwarf spheroidal (dSph) galaxy by Hayes et al. We select Milky Way (MW) stars that have stellar parameters ( ,Teff, and [Fe/H] ) similar to those of the Sagittarius members by means of a k-d tree of dimension 3. We find that the shape of the distribution of RV shifts in Sgr dSph stars is similar to that measured in their MW analogs, but the total fraction of RV variable stars in the Sgr dSph is larger by a factor of ∼2. After ruling out other explanations for this difference, we conclude that the fraction of close binaries in the Sgr dSph is intrinsically higher than in the MW. We discuss the implications of this result for the physical processes leading to the formation of close binaries in dwarf spheroidal and spiral galaxies. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1909022
- PAR ID:
- 10368343
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 933
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L18
- Size(s):
- Article No. L18
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We analyze four epochs of Hubble Space Telescope imaging over 18 yr for the Draco dwarf spheroidal galaxy. We measure precise proper motions for hundreds of stars and combine these with existing line-of-sight (LOS) velocities. This provides the first radially resolved 3D velocity dispersion profiles for any dwarf galaxy. These constrain the intrinsic velocity anisotropy and resolve the mass–anisotropy degeneracy. We solve the Jeans equations in oblate axisymmetric geometry to infer the mass profile. We find the velocity dispersion to be radially anisotropic along the symmetry axis and tangentially anisotropic in the equatorial plane, with a globally averaged value , (where 1 – in 3D). The logarithmic dark matter (DM) density slope over the observed radial range, Γdark, is , consistent with the inner cusp predicted in ΛCDM cosmology. As expected given Draco’s low mass and ancient star formation history, it does not appear to have been dissolved by baryonic processes. We rule out cores larger than 487, 717, and 942 pc at 1σ, 2σ, and 3σconfidence, respectively, thus imposing important constraints on the self-interacting DM cross section. Spherical models yield biased estimates for both the velocity anisotropy and the inferred slope. The circular velocity at our outermost data point (900 pc) is . We infer a dynamical distance of kpc and show that Draco has a modest LOS rotation, with . Our results provide a new stringent test of the so-called “cusp–core” problem that can be readily extended to other dwarfs.more » « less
- 
            Abstract Gravitational wave searches are crucial for studying compact sources such as neutron stars and black holes. Many sensitive modeled searches use matched filtering to compare gravitational strain data to a set of waveform models known as template banks. We introduce a new stochastic placement method for constructing template banks, offering efficiency and flexibility to handle arbitrary parameter spaces, including orbital eccentricity, tidal deformability, and other extrinsic parameters. This method can be computationally limited by the ability to compare proposal templates with the accepted templates in the bank. To alleviate this computational load, we introduce the use of inner product inequalities to reduce the number of required comparisons. We also introduce a novel application of Gaussian Kernel Density Estimation to enhance waveform coverage in sparser regions. Our approach has been employed to search for eccentric binary neutron stars, low-mass neutron stars, primordial black holes, and supermassive black hole binaries. We demonstrate that our method produces self-consistent banks that recover the required minimum fraction of signals. For common parameter spaces, our method shows comparable computational performance and similar template bank sizes to geometric placement methods and stochastic methods, while easily extending to higher-dimensional problems. The time to run a search exceeds the time to generate the bank by a factor of for dedicated template banks, such as geometric, mass-only stochastic, and aligned spin cases, for eccentric and for the tidal deformable bank. With the advent of efficient template bank generation, the primary area for improvement is developing more efficient search methodologies.more » « less
- 
            Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure , , and ∇[Fe/H]= −0.23 ± 0.15 dex . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure , , and ∇[Fe/H]= −0.46 ± 0.10 dex , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L⊙) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s.more » « less
- 
            Abstract We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with and . (ii) A metallicity gradient of −0.54 ± 0.07 dex (−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with and and a red RGB with and . (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
