skip to main content


Title: Tectonic Fabric in the Banda Arc‐Australian Continent Collisional Zone Imaged by Teleseismic Receiver Functions
Abstract

The convergent plate boundary in eastern Indonesia and Timor‐Leste captures an active oblique collision between the Banda Arc and the Australian plate. We analyzed ∼5 years' worth (2014–2019) of radial and tangential teleseismic Ps receiver functions (RFs) observed at 30 temporary broadband seismic stations across the area. Azimuthal variations in RF arrivals are observed throughout the region, indicative of the presence of oriented tectonic fabrics (dipping contrasts or plunging axis anisotropy) from a variety of crustal depths. The two main strikes of these fabrics are roughly parallel to the orogen and the plate convergence across the outer arc islands, likely associated with orogenic and strike‐slip structures. We observe distinct double polarity‐reversal arrivals with opposite polarity that reflect an anisotropic layer with orogen‐parallel strikes in the shallow crust beneath Timor and Savu, interpreted as metamorphic rocks. Fabrics oriented E‐W are imaged beneath the Flores and Lomblen that host active volcanoes, where we find interesting correlations with magmatic structures. NNW‐SSE striking fabric is imaged at ∼13 km depth beneath central Flores, which relates to a connected dike magmatic system that feeds the aligned cinder cones exposed on the surface. Finally, we identify convergence‐parallel fabrics on the volcano‐extinct islands of Alor and Atauro, consistent with one main fabric orientation imaged in Timor. We suggest all convergence‐parallel fabrics might accommodate strike‐slip motion generated by the overall NNE convergence of the Australian plate with respect to Eurasian plate and contribute to strain partitioning between the trough and backarc resulting from the collision.

 
more » « less
NSF-PAR ID:
10368363
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
23
Issue:
6
ISSN:
1525-2027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Azimuthal variations in receiver function conversions can image lithospheric structural contrasts and anisotropic fabrics that together compose tectonic grain. We apply this method to data from EarthScope Transportable Array in Alaska and additional stations across the northern Cordillera. The best-resolved quantities are the strike and depth of dipping fabric contrasts or interfaces. We find a strong geographic gradient in such anomalies, with large amplitudes extending inboard from the present-day subduction margin, the Aleutian arc, and an influence of flat-slab subduction of the Yakutat microplate north of the Denali fault. An east–west band across interior Alaska shows low- amplitude crustal anomalies. Anomaly amplitudes correlate with structural intensity (density of aligned geological elements), but are the highest in areas of strong Cenozoic deformation, raising the question of an influence of current stress state. Imaged subsurface strikes show alignment with surface structures. We see concentric strikes around arc volcanoes implying dipping magmatic structures and fabric into the middle crust. Regions with present-day weaker deformation show lower anomaly amplitudes but structurally aligned strikes, suggesting pre-Cenozoic fabrics may have been overprinted or otherwise modified. We observe general coherence of the signal across the brittle-plastic transition. Imaged crustal fabrics are aligned with major faults and shear zones, whereas intrafault blocks show imaged strikes both parallel to and at high angles to major block-bounding faults. High-angle strikes are subparallel to neotectonic deformation, seismicity, fault lineaments, and prominent metallogenic belts, possibly due to overprinting and/or co-evolution with fault-parallel fabrics. We suggest that the underlying tectonic grain in the northern Cordillera is broadly distributed rather than strongly localized. Receiver functions thus reveal key information about the nature and continuity of tectonic fabrics at depth and can provide unique insights into the deformation history and distribution of regional strain in complex orogenic belts. 
    more » « less
  2. null (Ed.)
    Abstract Azimuthal variations in receiver function conversions can image lithospheric structural contrasts and anisotropic fabrics that together compose tectonic grain. We apply this method to data from EarthScope Transportable Array in Alaska and additional stations across the northern Cordillera. The best-resolved quantities are the strike and depth of dipping fabric contrasts or interfaces. We find a strong geographic gradient in such anomalies, with large amplitudes extending inboard from the present-day subduction margin, the Aleutian arc, and an influence of flat-slab subduction of the Yakutat microplate north of the Denali fault. An east–west band across interior Alaska shows low-amplitude crustal anomalies. Anomaly amplitudes correlate with structural intensity (density of aligned geological elements), but are the highest in areas of strong Cenozoic deformation, raising the question of an influence of current stress state. Imaged subsurface strikes show alignment with surface structures. We see concentric strikes around arc volcanoes implying dipping magmatic structures and fabric into the middle crust. Regions with present-day weaker deformation show lower anomaly amplitudes but structurally aligned strikes, suggesting pre-Cenozoic fabrics may have been overprinted or otherwise modified. We observe general coherence of the signal across the brittle-plastic transition. Imaged crustal fabrics are aligned with major faults and shear zones, whereas intrafault blocks show imaged strikes both parallel to and at high angles to major block-bounding faults. High-angle strikes are subparallel to neotectonic deformation, seismicity, fault lineaments, and prominent metallogenic belts, possibly due to overprinting and/or co-evolution with fault-parallel fabrics. We suggest that the underlying tectonic grain in the northern Cordillera is broadly distributed rather than strongly localized. Receiver functions thus reveal key information about the nature and continuity of tectonic fabrics at depth and can provide unique insights into the deformation history and distribution of regional strain in complex orogenic belts. 
    more » « less
  3. Abstract

    Detailed crustal and uppermost mantle structure is imaged for the first time utilizing ∼4 years of broadband seismic data newly collected in the Timor‐Leste and Nusa Tenggara Timor region of Indonesia. We apply three techniques, ambient noise tomography, teleseismicPwave receiver function, and coda autocorrelation, to resolve a 3D Vs model and Moho structure. Our tomographic images show low‐velocity anomalies (<30 km) beneath Timor related to underthrusted Gondwana sequence from the Australian plate, which are vertically offset by the high‐velocity backstop of the Banda forearc terrane. The structure progressively changes along strike, reflecting different collisional stages developed as a result of the oblique convergence. At greater depth, we detect seismically fast lithospheric mantle (>30 km) and the arc‐ward dipping Moho beneath Timor, both interpreted to be from the Australian plate. Our findings provide direct structural evidence of the Australian continental margin at lithospheric depths beneath the Banda Arc collisional zone.

     
    more » « less
  4. Abstract

    We use traveltimes from a temporary seismic deployment of 30 broadband seismometers and a national catalog of arrival times to construct a finite‐frequency teleseismicP‐wave tomographic model of the upper mantle beneath eastern Indonesia, where subduction of the Indo‐Australian plate beneath the Banda Arc transitions to arc‐continent collision. The change in tectonics is due to a change from oceanic to continental lithosphere in the lower plate as inferred from geological mapping and geophysical, geochemical, and geodetic measurements. At this inferred transition, we seismically image the subducted continent‐ocean boundary at upper mantle depths that links volcanism on Flores to amagmatic orogenesis on Timor. Our tomographic images reveal a relatively high‐velocity feature within the upper mantle, which we interpret as the subducted Indo‐Australian slab. The slab appears continuous yet deformed as a result of the change in buoyancy due to the composition of the incoming continental lithosphere. Accordingly, there is a difference in dip angle between the oceanic and continental sections of the slab albeit not a gap or discontinuity. We suggest the slab has deformed without tearing to accommodate structural and kinematic changes across the continent‐ocean boundary as the two sections of the slab diverge. These results suggest that deformation in tectonic collisions can be localized along a continent‐ocean boundary, even at depth. We propose that future slab tearing may develop where we observe slab deformation in our study region and that a similar process may take place in collisions generally.

     
    more » « less
  5. Abstract

    Plate motions in Southern California have undergone a transition from compressional and extensional regimes to a dominantly strike‐slip regime in the Miocene. Strike‐slip motion is most easily accommodated on vertical faults, and major transform fault strands in the region are typically mapped as near vertical on the surface. However, some previous work suggests that these faults have a dipping geometry at depth. We analyze receiver function arrivals that vary harmonically with back azimuth at all available broadband stations in the region. The results show a dominant signal from contrasts in dipping foliation as well as dipping isotropic velocity contrasts from all crustal depths, including from the ductile middle to lower crust. We interpret these receiver function observations as a dipping fault‐parallel structural fabric that is pervasive throughout the region. The strike of these structures and fabrics is parallel to that of nearby fault surface traces. We also plot microseismicity on depth profiles perpendicular to major strike‐slip faults and find consistently NE dipping features in seismicity changing from near vertical (80–85°) on the Elsinore Fault in the Peninsular Ranges to 60–65° slightly further inland on the San Jacinto Fault to 50–55° on the San Andreas Fault. Taken together, the dipping features in seismicity and in rock fabric suggest that preexisting fabrics and faults may have acted as strain guides in the modern slip regime, with reactivation and growth of strike‐slip faults along northeast dipping fabrics both above and below the brittle‐ductile transition.

     
    more » « less