skip to main content


Title: Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae
Abstract

Recent work has revealed that the light curves of hydrogen-poor (Type I) superluminous supernovae (SLSNe), thought to be powered by magnetar central engines, do not always follow the smooth decline predicted by a simple magnetar spin-down model. Here we present the first systematic study of the prevalence and properties of “bumps” in the post-peak light curves of 34 SLSNe. We find that the majority (44%–76%) of events cannot be explained by a smooth magnetar model alone. We do not find any difference in supernova properties between events with and without bumps. By fitting a simple Gaussian model to the light-curve residuals, we characterize each bump with an amplitude, temperature, phase, and duration. We find that most bumps correspond with an increase in the photospheric temperature of the ejecta, although we do not see drastic changes in spectroscopic features during the bump. We also find a moderate correlation (ρ≈ 0.5;p≈ 0.01) between the phase of the bumps and the rise time, implying that such bumps tend to happen at a certain “evolutionary phase,” (3.7 ± 1.4)trise. Most bumps are consistent with having diffused from a central source of variable luminosity, although sources further out in the ejecta are not excluded. With this evidence, we explore whether the cause of these bumps is intrinsic to the supernova (e.g., a variable central engine) or extrinsic (e.g., circumstellar interaction). Both cases are plausible, requiring low-level variability in the magnetar input luminosity, small decreases in the ejecta opacity, or a thin circumstellar shell or disk.

 
more » « less
NSF-PAR ID:
10368444
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 14
Size(s):
["Article No. 14"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interaction scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star. 
    more » « less
  2. Context. SN 2020qlb (ZTF20abobpcb) is a hydrogen-poor superluminous supernova (SLSN-I) that is among the most luminous (maximum M g  = −22.25 mag) and that has one of the longest rise times (77 days from explosion to maximum). We estimate the total radiated energy to be > 2.1 × 10 51 erg. SN 2020qlb has a well-sampled light curve that exhibits clear near and post peak undulations, a phenomenon seen in other SLSNe, whose physical origin is still unknown. Aims. We discuss the potential power source of this immense explosion as well as the mechanisms behind its observed light curve undulations. Methods. We analyze photospheric spectra and compare them to other SLSNe-I. We constructed the bolometric light curve using photometry from a large data set of observations from the Zwicky Transient Facility (ZTF), Liverpool Telescope (LT), and Neil Gehrels Swift Observatory and compare it with radioactive, circumstellar interaction and magnetar models. Model residuals and light curve polynomial fit residuals are analyzed to estimate the undulation timescale and amplitude. We also determine host galaxy properties based on imaging and spectroscopy data, including a detection of the [O III] λ 4363, auroral line, allowing for a direct metallicity measurement. Results. We rule out the Arnett 56 Ni decay model for SN 2020qlb’s light curve due to unphysical parameter results. Our most favored power source is the magnetic dipole spin-down energy deposition of a magnetar. Two to three near peak oscillations, intriguingly similar to those of SN 2015bn, were found in the magnetar model residuals with a timescale of 32 ± 6 days and an amplitude of 6% of peak luminosity. We rule out centrally located undulation sources due to timescale considerations; and we favor the result of ejecta interactions with circumstellar material (CSM) density fluctuations as the source of the undulations. 
    more » « less
  3. ABSTRACT

    Luminosity evolution of some stripped-envelope supernovae such as Type I superluminous supernovae is difficult to explain by the canonical 56Ni nuclear decay heating. A popular alternative heating source is rapid spin-down of strongly magnetized rapidly rotating neutron stars (magnetars). Recent observations have indicated that Type I superluminous supernovae often have bumpy light curves with multiple luminosity peaks. The cause of bumpy light curves is unknown. In this study, we investigate the possibility that the light-curve bumps are caused by variations of the thermal energy injection from magnetar spin-down. We find that a temporal increase in the thermal energy injection can lead to multiple luminosity peaks. The multiple luminosity peaks caused by the variable thermal energy injection is found to be accompanied by significant increase in photospheric temperature, and photospheric radii are not significantly changed. We show that the bumpy light curves of SN 2015bn and SN 2019stc can be reproduced by temporarily increasing magnetar spin-down energy input by a factor of 2–3 for 5–20 d. However, not all the light-curve bumps are accompanied by the clear photospheric temperature increase as predicted by our synthetic models. In particular, the secondary light-curve bump of SN 2019stc is accompanied by a temporal increase in photospheric radii rather than temperature, which is not seen in our synthetic models. We therefore conclude that not all the light-curve bumps observed in luminous supernovae are caused by the variable thermal energy injection from magnetar spin-down and some bumps are likely caused by a different mechanism.

     
    more » « less
  4. Abstract

    We present observations of a peculiar hydrogen- and helium-poor stripped-envelope (SE) supernova (SN) 2020wnt, primarily in the optical and near-infrared (near-IR). Its peak absolute bolometric magnitude of −20.9 mag (Lbol, peak= (6.8 ± 0.3) × 1043erg s−1) and a rise time of 69 days are reminiscent of hydrogen-poor superluminous SNe (SLSNe I), luminous transients potentially powered by spinning-down magnetars. Before the main peak, there is a brief peak lasting <10 days post explosion, likely caused by interaction with circumstellar medium (CSM) ejected ∼years before the SN explosion. The optical spectra near peak lack a hot continuum and Oiiabsorptions, which are signs of heating from a central engine; they quantitatively resemble those of radioactivity-powered hydrogen/helium-poor Type Ic SESNe. At ∼1 yr after peak, nebular spectra reveal a blue pseudo-continuum and narrow Oirecombination lines associated with magnetar heating. Radio observations rule out strong CSM interactions as the dominant energy source at +266 days post peak. Near-IR observations at +200–300 days reveal carbon monoxide and dust formation, which causes a dramatic optical light-curve dip. Pair-instability explosion models predict slow light curve and spectral features incompatible with observations. SN 2020wnt is best explained as a magnetar-powered core-collapse explosion of a 28Mpre-SN star. The explosion kinetic energy is significantly larger than the magnetar energy at peak, effectively concealing the magnetar-heated inner ejecta until well after peak. SN 2020wnt falls into a continuum between normal SNe Ic and SLSNe I, and demonstrates that optical spectra at peak alone cannot rule out the presence of a central engine.

     
    more » « less
  5. ABSTRACT

    Rapidly rotating magnetars have been associated with gamma-ray bursts (GRBs) and superluminous supernovae (SLSNe). Using a suite of two-dimensional magnetohydrodynamic simulations at fixed neutrino luminosity and a couple of evolutionary models with evolving neutrino luminosity and magnetar spin period, we show that magnetars are viable central engines for powering GRBs and SLSNe. We also present analytical estimates of the energy outflow rate from the proto-neutron star (PNS) as a function of polar magnetic field strength B0, PNS angular velocity Ω⋆, PNS radius R⋆, and mass outflow rate $\dot{M}$. We show that rapidly rotating magnetars with spin periods P⋆ ≲ 4 ms and polar magnetic field strength B0 ≳ 1015 G can release 1050 to 5 × 1051 erg of energy during the first ∼2 s of the cooling phase. Based on this result, it is plausible that sustained energy injection by magnetars through the relativistic wind phase can power GRBs. We also show that magnetars with moderate field strengths of B0 ≲ 5 × 1014 G do not release a large fraction of their rotational kinetic energy during the cooling phase and, hence, are not likely to power GRBs. Although we cannot simulate to times greater than ∼3–5 s after a supernova, we can hypothesize that moderate field strength magnetars can brighten the supernova light curves by releasing their rotational kinetic energy via magnetic dipole radiation on time-scales of days to weeks, since these do not expend most of their rotational kinetic energy during the early cooling phase.

     
    more » « less