skip to main content

Title: Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae

Recent work has revealed that the light curves of hydrogen-poor (Type I) superluminous supernovae (SLSNe), thought to be powered by magnetar central engines, do not always follow the smooth decline predicted by a simple magnetar spin-down model. Here we present the first systematic study of the prevalence and properties of “bumps” in the post-peak light curves of 34 SLSNe. We find that the majority (44%–76%) of events cannot be explained by a smooth magnetar model alone. We do not find any difference in supernova properties between events with and without bumps. By fitting a simple Gaussian model to the light-curve residuals, we characterize each bump with an amplitude, temperature, phase, and duration. We find that most bumps correspond with an increase in the photospheric temperature of the ejecta, although we do not see drastic changes in spectroscopic features during the bump. We also find a moderate correlation (ρ≈ 0.5;p≈ 0.01) between the phase of the bumps and the rise time, implying that such bumps tend to happen at a certain “evolutionary phase,” (3.7 ± 1.4)trise. Most bumps are consistent with having diffused from a central source of variable luminosity, although sources further out in the ejecta are not excluded. more » With this evidence, we explore whether the cause of these bumps is intrinsic to the supernova (e.g., a variable central engine) or extrinsic (e.g., circumstellar interaction). Both cases are plausible, requiring low-level variability in the magnetar input luminosity, small decreases in the ejecta opacity, or a thin circumstellar shell or disk.

« less
; ; ; ; ;
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 14
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present and discuss the optical spectrophotometric observations of the nearby (z = 0.087) Type I superluminous supernova (SLSN I) SN 2017gci, whose peak K-corrected absolute magnitude reaches Mg = −21.5 mag. Its photometric and spectroscopic evolution includes features of both slow- and of fast-evolving SLSN I, thus favoring a continuum distribution between the two SLSN-I subclasses. In particular, similarly to other SLSNe I, the multiband light curves (LCs) of SN 2017gci show two re-brightenings at about 103 and 142 d after the maximum light. Interestingly, this broadly agrees with a broad emission feature emerging around 6520 Å after ∼51 d from the maximum light, which is followed by a sharp knee in the LC. If we interpret this feature as Hα, this could support the fact that the bumps are the signature of late interactions of the ejecta with a (hydrogen-rich) circumstellar material. Then we fitted magnetar- and CSM-interaction-powered synthetic LCs on to the bolometric one of SN 2017gci. In the magnetar case, the fit suggests a polar magnetic field Bp ≃ 6 × 1014 G, an initial period of the magnetar Pinitial ≃ 2.8 ms, an ejecta mass $M_{\rm ejecta}\simeq 9\, \mathrm{M}_\odot $ and an ejecta opacity $\kappa \simeq 0.08\, \mathrm{cm}^{2}\, \rm{g}^{-1}$. A CSM-interactionmore »scenario would imply a CSM mass $\simeq 5\, \mathrm{M}_\odot $ and an ejecta mass $\simeq 12\, \mathrm{M}_\odot $. Finally, the nebular spectrum of phase  + 187 d was modeled, deriving a mass of $\sim 10\, {\rm M}_\odot$ for the ejecta. Our models suggest that either a magnetar or CSM interaction might be the power sources for SN 2017gci and that its progenitor was a massive ($40\, {\rm M}_\odot$) star.« less
  2. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity,more »strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

    « less
  3. Abstract

    Stripped-envelope core-collapse supernovae can be divided into two broad classes: the common Type Ib/c supernovae (SNe Ib/c), powered by the radioactive decay of56Ni, and the rare superluminous supernovae (SLSNe), most likely powered by the spin-down of a magnetar central engine. Up to now, the intermediate regime between these two populations has remained mostly unexplored. Here, we present a comprehensive study of 40luminous supernovae(LSNe), SNe with peak magnitudes ofMr= −19 to −20 mag, bound by SLSNe on the bright end and by SNe Ib/c on the dim end. Spectroscopically, LSNe appear to form a continuum between Type Ic SNe and SLSNe. Given their intermediate nature, we model the light curves of all LSNe using a combined magnetar plus radioactive decay model and find that they are indeed intermediate, not only in terms of their peak luminosity and spectra, but also in their rise times, power sources, and physical parameters. We subclassify LSNe into distinct groups that are either as fast evolving as SNe Ib/c or as slow evolving as SLSNe, and appear to be either radioactively or magnetar powered, respectively. Our findings indicate that LSNe are powered by either an overabundant production of56Ni or by weak magnetar engines, and maymore »serve as the missing link between the two populations.

    « less
  4. Abstract

    We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M) and56Ni masses (≲0.04M) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-strippedmore »star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.

    « less

    We present a sample of 14 hydrogen-rich superluminous supernovae (SLSNe II) from the Zwicky Transient Facility (ZTF) between 2018 and 2020. We include all classified SLSNe with peaks Mg < −20 mag with observed broad but not narrow Balmer emission, corresponding to roughly 20 per cent of all hydrogen-rich SLSNe in ZTF phase I. We examine the light curves and spectra of SLSNe II and attempt to constrain their power source using light-curve models. The brightest events are photometrically and spectroscopically similar to the prototypical SN 2008es, while others are found spectroscopically more reminiscent of non-superluminous SNe II, especially SNe II-L. 56Ni decay as the primary power source is ruled out. Light-curve models generally cannot distinguish between circumstellar interaction (CSI) and a magnetar central engine, but an excess of ultraviolet (UV) emission signifying CSI is seen in most of the SNe with UV data, at a wide range of photometric properties. Simultaneously, the broad H α profiles of the brightest SLSNe II can be explained through electron scattering in a symmetric circumstellar medium (CSM). In other SLSNe II without narrow lines, the CSM may be confined and wholly overrun by the ejecta. CSI, possibly involving mass lost in recent eruptions, is implied to be the dominant power source inmore »most SLSNe II, and the diversity in properties is likely the result of different mass loss histories. Based on their radiated energy, an additional power source may be required for the brightest SLSNe II, however – possibly a central engine combined with CSI.

    « less