We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, withmore »
We present the discovery of TOI-2136 b, a sub-Neptune planet transiting a nearby M4.5V-type star every 7.85 d, identified through photometric measurements from the Transiting Exoplanet Survey Satellite (TESS) mission. The host star is located 33 pc away with a radius of R* = 0.34 ± 0.02 R⊙, a mass of $0.34\pm 0.02 \, \mathrm{M}_{\odot }$, and an effective temperature of 3342 ± 100 K. We estimate its stellar rotation period to be 75 ± 5 d based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multiwavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from Canada–France–Hawaii Telescope (CFHT)/SpectroPolarimètre InfraROUge (SPIRou). Our joint analysis reveals that the planet has a radius of 2.20 ± 0.17 R⊕ and a mass of 6.4 ± 2.4 M⊕. The mass and radius of TOI-2136 b are consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136 b falls close to the radius valley for M dwarfs predicted by thermally driven atmospheric mass-loss models, making it an interesting target for future studies of its interior structure and atmospheric properties.
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publication Date:
- NSF-PAR ID:
- 10368449
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 514
- Issue:
- 3
- Page Range or eLocation-ID:
- p. 4120-4139
- ISSN:
- 0035-8711
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Populating the exoplanet mass–radius diagram in order to identify the underlying relationship that governs planet composition is driving an interdisciplinary effort within the exoplanet community. The discovery of hot super-Earths—a high-temperature, short-period subset of the super-Earth planet population—has presented many unresolved questions concerning the formation, evolution, and composition of rocky planets. We report the discovery of a transiting, ultra-short-period hot super-Earth orbiting
TOI-1075 (TIC351601843) , a nearby (d = 61.4 pc) late-K/early-M-dwarf star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius of 1.791R ⊕and an orbital period of 0.605 day (14.5 hr). We precisely measure the planet mass to be 9.95M ⊕using radial velocity measurements obtained with the Planet Finder Spectrograph mounted on the Magellan II telescope. Our radial velocity data also show a long-term trend, suggesting an additional planet in the system. While TOI-1075 b is expected to have a substantial H/He atmosphere given its size relative to the radius gap, its high density ( g cm−3) is likely inconsistent with this possibility. We explore TOI-1075 b’s location relative to the M-dwarf radius valley, evaluate the planet’s prospects for atmospheric characterization, andmore » -
Abstract Exoplanet systems with multiple transiting planets are natural laboratories for testing planetary astrophysics. One such system is HD 191939 (TOI 1339), a bright (
V = 9) and Sun-like (G9V) star, which TESS found to host three transiting planets (b, c, and d). The planets have periods of 9, 29, and 38 days each with similar sizes from 3 to 3.4R ⊕. To further characterize the system, we measured the radial velocity (RV) of HD 191939 over 415 days with Keck/HIRES and APF/Levy. We find thatM b = 10.4 ± 0.9M ⊕andM c = 7.2 ± 1.4M ⊕, which are low compared to most known planets of comparable radii. The RVs yield only an upper limit onM d (<5.8M ⊕at 2σ ). The RVs further reveal a fourth planet (e) with a minimum mass of 0.34 ± 0.01M Jupand an orbital period of 101.4 ± 0.4 days. Despite its nontransiting geometry, secular interactions between planet e and the inner transiting planets indicate that planet e is coplanar with the transiting planets (Δi < 10°). We identify a second high-mass planet (f) with 95% confidence intervals on mass between 2 and 11M Jupand period between 1700 and 7200 days, based on a joint analysis of RVs and astrometry from Gaia and Hipparcos. As a bright starmore » -
Abstract We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015
M ⊙. Its planetary radius is 1.03 ± 0.03R J, while the mass is 1.08 ± 0.06M J. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets. -
ABSTRACT We present the discovery and characterization of two transiting planets observed by TESS in the light curves of the young and bright (V = 9.67) star HD73583 (TOI-560). We perform an intensive spectroscopic and photometric space- and ground-based follow-up in order to confirm and characterize the system. We found that HD73583 is a young (∼500 Myr) active star with a rotational period of 12.08 ± 0.11 d, and a mass and radius of 0.73 ± 0.02 M⊙ and 0.65 ± 0.02 R⊙, respectively. HD 73583 b (Pb = $6.3980420 _{ - 0.0000062 } ^ { + 0.0000067 }$ d) has a mass and radius of $10.2 _{ - 3.1 } ^ { + 3.4 }$ M⊕ and 2.79 ± 0.10 R⊕, respectively, which gives a density of $2.58 _{ - 0.81 } ^ { + 0.95 }$ ${\rm g\, cm^{-3}}$. HD 73583 c (Pc = $18.87974 _{ - 0.00074 } ^ { + 0.00086 }$ d) has a mass and radius of $9.7 _{ - 1.7 } ^ { + 1.8 }$ M⊕ and $2.39 _{ - 0.09 } ^ { + 0.10 }$ R⊕, respectively, which translates to a density of $3.88 _{ - 0.80 } ^ { + 0.91 }$ ${\rm g\, cm^{-3}}$. Both planets are consistent with worlds made of a solid core surrounded by a volatile envelope. Because of their youth andmore »