skip to main content


Title: TESS discovery of a sub-Neptune orbiting a mid-M dwarf TOI-2136
ABSTRACT

We present the discovery of TOI-2136 b, a sub-Neptune planet transiting a nearby M4.5V-type star every 7.85 d, identified through photometric measurements from the Transiting Exoplanet Survey Satellite (TESS) mission. The host star is located 33 pc away with a radius of R* = 0.34 ± 0.02 R⊙, a mass of $0.34\pm 0.02 \, \mathrm{M}_{\odot }$, and an effective temperature of 3342 ± 100 K. We estimate its stellar rotation period to be 75 ± 5 d based on archival long-term photometry. We confirm and characterize the planet based on a series of ground-based multiwavelength photometry, high-angular-resolution imaging observations, and precise radial velocities from Canada–France–Hawaii Telescope (CFHT)/SpectroPolarimètre InfraROUge (SPIRou). Our joint analysis reveals that the planet has a radius of 2.20 ± 0.17 R⊕ and a mass of 6.4 ± 2.4 M⊕. The mass and radius of TOI-2136 b are consistent with a broad range of compositions, from water-ice to gas-dominated worlds. TOI-2136 b falls close to the radius valley for M dwarfs predicted by thermally driven atmospheric mass-loss models, making it an interesting target for future studies of its interior structure and atmospheric properties.

 
more » « less
NSF-PAR ID:
10368449
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4120-4139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine $T_{\rm eff, \star }=4734\pm 67\,\mathrm{ K}$, $R_{\star }=0.726\pm 0.007\, \mathrm{ R}_{\odot }$, and $M_{\star }=0.748\pm 0.032\, \mathrm{ M}_{\odot }$. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of $M_{\rm b} = 13.5_{-1.8}^{+1.7}$ M⊕, whilst TOI-1064 c has an orbital period of $P_{\rm c} = 12.22657^{+0.00005}_{-0.00004}$ d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.

     
    more » « less
  2. Abstract

    We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015M. Its planetary radius is 1.03 ± 0.03RJ, while the mass is 1.08 ± 0.06MJ. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.

     
    more » « less
  3. We report the discovery and characterization of two small transiting planets orbiting the bright M3.0V star TOI-1468 (LSPM J0106+1913), whose transit signals were detected in the photometric time series in three sectors of the TESS mission. We confirm the planetary nature of both of them using precise radial velocity measurements from the CARMENES and MAROON-X spectrographs, and supplement them with ground-based transit photometry. A joint analysis of all these data reveals that the shorter-period planet, TOI-1468 b ( P b = 1.88 d), has a planetary mass of M b = 3.21 ± 0.24 M ⊕ and a radius of R b = 1.280 −0.039 +0.038 R ⊕ , resulting in a density of ρ b = 8.39 −0.92 +1.05 g cm −3 , which is consistent with a mostly rocky composition. For the outer planet, TOI-1468 c ( P c = 15.53 d), we derive a mass of M c = 6.64 −0.68 +0.67 M ⊕ ,aradius of R c = 2.06 ± 0.04 R ⊕ , and a bulk density of ρ c = 2.00 −0.19 +0.21 g cm −3 , which corresponds to a rocky core composition with a H/He gas envelope. These planets are located on opposite sides of the radius valley, making our system an interesting discovery as there are only a handful of other systems with the same properties. This discovery can further help determine a more precise location of the radius valley for small planets around M dwarfs and, therefore, shed more light on planet formation and evolution scenarios. 
    more » « less
  4. ABSTRACT

    We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of $2.699835^{+0.000004}_{-0.000003}$ d, a radius of 5.24 ± 0.09 R⊕, and a mass of 42 ± 3 M⊕, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn–mass planet on a moderately eccentric orbit ($0.13^{+0.07}_{-0.09}$) with a minimum mass of 84 ± 7 M⊕ and a period of $443^{+11}_{-13}$ d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We report on the discovery and validation of TOI 813 b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($R_\star =1.94\, R_\odot$, $M_\star =1.32\, M_\odot$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $2\, M_{\rm Jup}$ (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $83.8911 _{ - 0.0031 } ^ { + 0.0027 }$ d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of $0.423 _{ - 0.037 } ^ { + 0.031 }$ AU. The planet’s orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet. 
    more » « less