skip to main content

Title: The galactic dust-up: modelling dust evolution in FIRE
ABSTRACT

Recent strides have been made developing dust evolution models for galaxy formation simulations but these approaches vary in their assumptions and degree of complexity. Here, we introduce and compare two separate dust evolution models (labelled ‘Elemental’ and ‘Species’), based on recent approaches, incorporated into the gizmo code and coupled with fire-2 stellar feedback and interstellar medium physics. Both models account for turbulent dust diffusion, stellar production of dust, dust growth via gas-dust accretion, and dust destruction from time-resolved supernovae, thermal sputtering in hot gas, and astration. The ‘Elemental’ model tracks the evolution of generalized dust species and utilizes a simple, ‘tunable’ dust growth routine, while the ‘Species’ model tracks the evolution of specific dust species with set chemical compositions and incorporates a physically motivated, two-phase dust growth routine. We test and compare these models in an idealized Milky Way-mass galaxy and find that while both produce reasonable galaxy-integrated dust-to-metals (D/Z) ratios and predict gas-dust accretion as the main dust growth mechanism, a chemically motivated model is needed to reproduce the observed scaling relation between individual element depletions and D/Z with column density and local gas density. We also find the inclusion of theoretical metallic iron and O-bearing dust species more » are needed in the case of specific dust species in order to match observations of O and Fe depletions, and the integration of a sub-resolution dense molecular gas/CO scheme is needed to both match observed C depletions and ensure carbonaceous dust is not overproduced in dense environments.

« less
Authors:
; ; ; ; ;
Award ID(s):
2009234 2108230 1652522 2108318 1715101 2108314 1715216
Publication Date:
NSF-PAR ID:
10368501
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
3
Page Range or eLocation-ID:
p. 4506-4534
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The metallicity and gas density dependence of interstellar depletions, the dust-to-gas (D/G), and dust-to-metal (D/M) ratios have important implications for how accurately we can trace the chemical enrichment of the universe, either by using FIR dust emission as a tracer of the ISM or by using spectroscopy of damped Ly α systems to measure chemical abundances over a wide range of redshifts. We collect and compare large samples of depletion measurements in the Milky Way (MW), Large Magellanic Cloud (LMC) ( Z = 0.5 Z ⊙ ), and Small Magellanic Cloud (SMC) ( Z = 0.2 Z ⊙ ). The relations between the depletions of different elements do not strongly vary between the three galaxies, implying that abundance ratios should trace depletions accurately down to 20% solar metallicity. From the depletions, we derive D/G and D/M. The D/G increases with density, consistent with the more efficient accretion of gas-phase metals onto dust grains in the denser ISM. For log N (H) > 21 cm −2 , the depletion of metallicity tracers (S, Zn) exceeds −0.5 dex, even at 20% solar metallicity. The gas fraction of metals increases from the MW to the LMC (factor 3) and SMC (factor 6),more »compensating for the reduction in total heavy element abundances and resulting in those three galaxies having the same neutral gas-phase metallicities. The D/G derived from depletions are respective factors of 2 (LMC) and 5 (SMC) higher than the D/G derived from FIR, 21 cm, and CO emission, likely due to the combined uncertainties on the dust FIR opacity and on the depletion of carbon and oxygen.« less
  2. ABSTRACT

    Velocity dispersion (σ) is a key driver for galaxy structure and evolution. We here present a comprehensive semi-empirical approach to compute σ via detailed Jeans modelling assuming both a constant and scale-dependent mass-to-light ratio M*/L. We compare with a large sample of local galaxies from MaNGA and find that both models can reproduce the Faber–Jackson (FJ) relation and the weak dependence of σ on bulge-to-total (B/T) ratio (for B/T ≳ 0.25). The dynamical-to-stellar mass ratio within R ≲ Re can be fully accounted for by a gradient in M*/L. We then build velocity dispersion evolutionary tracks σap[M*, z] (within an aperture) along the main progenitor dark matter haloes assigning stellar masses, effective radii, and Sérsic  indices via a variety of abundance matching and empirically motivated relations. We find: (1) clear evidence for downsizing in σap[M*, z] along the progenitor tracks; (2) at fixed stellar mass σ ∝ (1 + z)0.2−0.3 depending on the presence or not of a gradient in M*/L. We extract σap[M*, z] from the TNG50 hydrodynamic simulation and find very similar results to our models with constant M*/L. The increasing dark matter fraction within Re tends to flatten the σap[M*, z] along the progenitors at z ≳ 1more »in constant M*/L models, while σap[M*, z] have a steeper evolution in the presence of a stellar gradient. We then show that a combination of mergers and gas accretion is likely responsible for the constant or increasing σap[M*, z] with time. Finally, our σap[M*, z] are consistent with a nearly constant and steep Mbh − σ relation at z ≲ 2, with black hole masses derived from the LX − M* relation.

    « less
  3. ABSTRACT We present predictions for the evolution of the galaxy dust-to-gas ratio (DGR) and dust-to-metal ratio (DTM) from z = 0 → 6, using a model for the production, growth, and destruction of dust grains implemented into the simba cosmological hydrodynamic galaxy formation simulation. In our model, dust forms in stellar ejecta, grows by the accretion of metals, and is destroyed by thermal sputtering and supernovae. Our simulation reproduces the observed dust mass function at z = 0, but modestly underpredicts the mass function by ∼×3 at z ∼ 1–2. The z = 0 DGR versus metallicity relationship shows a tight positive correlation for star-forming galaxies, while it is uncorrelated for quenched systems. There is little evolution in the DGR–metallicity relationship between z = 0 and 6. We use machine learning techniques to search for the galaxy physical properties that best correlate with the DGR and DTM. We find that the DGR is primarily correlated with the gas-phase metallicity, though correlations with the depletion time-scale, stellar mass, and gas fraction are non-negligible. We provide a crude fitting relationship for DGR and DTM versus the gas-phase metallicity, along with a public code package that estimates the DGR and DTM given a set ofmore »galaxy physical properties.« less
  4. Abstract

    We investigate the relationship between dust attenuation and stellar mass (M*) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hαand Hβemission lines, and photometric measurements of the rest-UV stellar continuum. The Hα/Hβratio is used to determine the magnitude of attenuation at the wavelength of Hα,AHα. Rest-UV colors and spectral energy distribution fitting are used to estimateA1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM*over the redshift rangez∼ 0 toz∼ 2.3. Folding in the latest estimates of the evolution ofMdust, (Mdust/Mgas), and gas surface density at fixedM*, we find that the expectedMdustand dust mass surface density are both significantly higher atz∼ 2.3 than atz∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancymore »in attenuation versusM*, it is essential to determine the relationship between metallicity and (Mdust/Mgas), the dust mass absorption coefficient and dust geometry, and the evolution of these relations and quantities fromz∼ 0 toz∼ 2.3.

    « less
  5. Context. The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: star birth and death, grain formation and destruction, and galactic inflows and outflows. Understanding such processes and their relative importance is essential to following galaxy evolution and the chemical enrichment through the cosmic epochs, and to interpreting current and future observations. Despite the importance of such topics, the contribution of different stellar sources to the chemical enrichment of galaxies, for example massive stars exploding as Type II supernovae (SNe) and low-mass stars, as well as the mechanisms driving the evolution of dust grains, such as for example grain growth in the ISM and destruction by SN shocks, remain controversial from both observational and theoretical viewpoints. Aims. In this work, we revise the current description of metal and dust evolution in the ISM of local low-metallicity dwarf galaxies and develop a new description of Lyman-break galaxies (LBGs) which are considered to be their high-redshift counterparts in terms of star formation, stellar mass, and metallicity. Our goal is to reproduce the observed properties of such galaxies, in particular (i) the peak in dust mass over total stellar mass (sMdust) observed within a few hundred millionmore »years; and (ii) the decrease in sMdust at a later time. Methods. We fitted spectral energy distribution of dwarf galaxies and LBGs with the “Code Investigating GALaxies Emission”, through which the total stellar mass, dust mass, and star formation rate are estimated. For some of the dwarf galaxies considered, the metal and gas content are available from the literature. We computed different prescriptions for metal and dust evolution in these systems (e.g. different initial mass functions for stars, dust condensation fractions, SN destruction, dust accretion in the ISM, and inflow and outflow efficiency), and we fitted the properties of the observed galaxies through the predictions of the models. Results. Only some combinations of models are able to reproduce the observed trend and simultaneously fit the observed properties of the galaxies considered. In particular, we show that (i) a top-heavy initial mass function that favours the formation of massive stars and a dust condensation fraction for Type II SNe of around 50% or more help to reproduce the peak of sMdust observed after ≈100 Myr from the beginning of the baryon cycle for both dwarf galaxies and LBGs; (ii) galactic outflows play a crucial role in reproducing the observed decline in sMdust with age and are more efficient than grain destruction from Type II SNe both in local galaxies and at high-redshift; (iii) a star formation efficiency (mass of gas converted into stars) of a few percent is required to explain the observed metallicity of local dwarf galaxies; and (iv) dust growth in the ISM is not necessary in order to reproduce the values of sMdust derived for the galaxies under study, and, if present, the effect of this process would be erased by galactic outflows.« less