skip to main content


Title: Transformation, reaction and organization of functional nanostructures using solution-based microreactor-assisted nanomaterial deposition for solar photovoltaics
Abstract

Microreactor-Assisted Nanomaterial Deposition (MAND) process offers unique capabilities in achieving large size and shape control levels while providing a more rapid path for scaling via process intensification for nanomaterial production. This review highlights the application of continuous flow microreactors to synthesize, assemble, transform, and deposit nanostructured materials for Solar Photovoltaics, the capabilities of MAND in the field, and the potential outlook of MAND.

Microreactor-Assisted Nanomaterial Deposition (MAND) is a promising technology that synthesizes reactive fluxes and nanomaterials to deposit nanostructured materials at the point of use. MAND offers precise control over reaction, organization, and transformation processes to manufacture nanostructured materials with distinct morphologies, structures, and properties. In synthesis, microreactor technology offers large surface-area-to-volume ratios within microchannel structures to accelerate heat and mass transport. This accelerated transport allows for rapid changes in reaction temperatures and concentrations, leading to more uniform heating and mixing in the deposition process. The possibility of synthesizing nanomaterials in the required volumes at the point of application eliminates the need to store and transport potentially hazardous materials. Further, MAND provides new opportunities for tailoring novel nanostructures and nano-shaped features, opening the opportunity to assemble unique nanostructures and nanostructured thin films. MAND processes control the heat transfer, mass transfer, and reaction kinetics using well-defined microstructures of the active unit reactor cell that can be replicated at larger scales to produce higher chemical production volumes. This critical feature opens a promising avenue in developing scalable nanomanufacturing. This paper reviews advances in microreactor-assisted nanomaterial deposition of nanostructured materials for solar photovoltaics. The discussions review the use of microreactors to tailor the reacting flux, transporting to substrate surfaces via controlling process parameters such as flow rates, pH of the precursor solutions, and seed layers on the formation and/or transformation of intermediary reactive molecules, nanoclusters, nanoparticles, and structured assemblies. In the end, the review discusses the use of an industrial scale MAND to apply anti-reflective and anti-soiling coatings on the solar modules in the field and details future outlooks of MAND reactors.

Graphical abstract

 
more » « less
NSF-PAR ID:
10368524
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press (CUP)
Date Published:
Journal Name:
MRS Energy & Sustainability
Volume:
9
Issue:
2
ISSN:
2329-2229
Page Range / eLocation ID:
p. 407-442
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Plasma technology is actively used for nanoparticle synthesis and modification. All plasma techniques share the ambition of providing high quality, nanostructured materials with full control over their crystalline state and functional properties. Pulsed-DC physical/chemical vapour deposition, high power impulse magnetron sputtering, and pulsed cathodic arc are consolidated low-temperature plasma processes for the synthesis of high-quality nanocomposite films in vacuum environment. However, atmospheric arc discharge stands out thanks to the high throughput, wide variety, and excellent quality of obtained stand-alone nanomaterials, mainly core–shell nanoparticles, transition metal dichalcogenide monolayers, and carbon-based nanostructures, like graphene and carbon nanotubes. Unique capabilities of this arc technique are due to its flexibility and wide range of plasma parameters achievable by modulation of the frequency, duty cycle, and amplitude of pulse waveform. The many possibilities offered by pulsed arc discharges applied on synthesis of low-dimensional materials are reviewed here. Periodical variations in temperature and density of the pulsing arc plasma enable nanosynthesis with a more rational use of the supplied power. Parameters such as plasma composition, consumed power, process stability, material properties, and economical aspects, are discussed. Finally, a brief outlook towards future tendencies of nanomaterial preparation is proposed. Atmospheric pulsed arcs constitute promising, clean processes providing ecological and sustainable development in the production of nanomaterials both in industry and research laboratories. 
    more » « less
  2. Manoj Gupta (Ed.)

    Three-dimensional (3D) printing with continuous carbon-fiber-reinforced polymer (C-CFRP) composites is under increasing development, as it offers more versatility than traditional molding processes, such as the out-of-autoclave-vacuum bag only (OOA-VBO) process. However, due to the layer-by-layer deposition of materials, voids can form between the layers and weaken some of the parts’ properties, such as the interlaminar shear strength (ILSS). In this paper, a novel mold-less magnetic compaction force-assisted additive manufacturing (MCFA-AM) method was used to print carbon nanofiber (CNF) z-threaded CFRP (ZT-CFRP) laminates with significantly improved ILSS and reduced void content compared to traditional C-CFRP laminates, which are printed using a no-pressure 3D-printing process (similar to the fused-deposition-modeling process). The radial flow alignment (RFA) and resin-blending techniques were utilized to manufacture a printing-compatible fast-curing ZT-CFRP prepreg tape to act as the feedstock for a MCFA-AM printhead, which was mounted on a robotic arm. In terms of the ILSS, the MCFA-AM method coupled with ZT-CFRP nanomaterial technology significantly outperformed the C-CFRP made with both the traditional no-pressure 3D-printing process and the OOA-VBO molding process. Furthermore, the mold-less MCFA-AM process more than doubled the production speed of the OOA-VBO molding process. This demonstrates that through the integration of new nanomaterials and 3D-printing techniques, a paradigm shift in C-CFRP manufacturing with significantly better performance, versatility, agility, efficiency, and lower cost is achievable.

     
    more » « less
  3. As one of the latest additions to the 2D nanomaterials family, black phosphorene (BP, monolayer or few-layer black phosphorus) has gained much attention in various forms of solar cells. This is due largely to its intriguing semiconducting properties such as tunable direct bandgap (from 0.3 eV in the bulk to 2.0 eV in the monolayer), extremely high ambipolar carrier mobility, broad visible to infrared light absorption, etc. These appealing optoelectronic attributes make BP a multifunctional nanomaterial for use in solar cells via tailoring carrier dynamics, band energy alignment, and light harvesting, thereby promoting the rapid development of third-generation solar cells. Notably, in sharp contrast to the copious work on revealing the fundamental properties of BP, investigation into the utility of BP is comparatively less, particularly in the area of photovoltaics. Herein, we first identify and summarize an array of unique characteristics of BP that underpin its application in photovoltaics, aiming at providing inspiration to develop new designs and device architectures of photovoltaics. Subsequently, state-of-the-art synthetic routes ( i.e. , top-down and bottom-up) to scalable BP production that facilitates its applications in optoelectronic materials and devices are outlined. Afterward, recent advances in a diverse set of BP-incorporated solar cells, where BP may impart electron and/or hole extraction and transport, function as a light absorber, provide dielectric screening for enhancing exciton dissociation, and modify the morphology of photoabsorbers, are discussed, including organic solar cells, dye-sensitized solar cells, heterojunction solar cells and perovskite solar cells. Finally, the challenges and opportunities in this rapidly evolving field are presented. 
    more » « less
  4. Abstract

    Gels self‐assembled from colloidal nanoparticles (NPs) translate the size‐dependent properties of nanostructures to materials with macroscale volumes. Large spanning networks of NP chains provide high interconnectivity within the material necessary for a wide range of properties from conductivity to viscoelasticity. However, a great challenge for nanoscale engineering of such gels lies in being able to accurately and quantitatively describe their complex non‐crystalline structure that combines order and disorder. The quantitative relationships between the mesoscale structural and material properties of nanostructured gels are currently unknown. Here, it is shown that lead telluride NPs spontaneously self‐assemble into a spanning network hydrogel. By applying graph theory (GT), a method for quantifying the complex structure of the NP gels is established using a topological descriptor of average nodal connectivity that is found to correlate with the gel's mechanical and charge transport properties. GT descriptions make possible the design of non‐crystalline porous materials from a variety of nanoscale components for photonics, catalysis, adsorption, and thermoelectrics.

     
    more » « less
  5. Nanoparticle clusters with molecular-like configurations are an emerging class of colloidal materials. Particles decorated with attractive surface patches acting as analogs of functional groups are used to assemble colloidal molecules (CMs); however, high-yield generation of patchy nanoparticles remains a challenge. We show that for nanoparticles capped with complementary reactive polymers, a stoichiometric reaction leads to reorganization of the uniform ligand shell and self-limiting nanoparticle bonding, whereas electrostatic repulsion between colloidal bonds governs CM symmetry. This mechanism enables high-yield CM generation and their programmable organization in hierarchical nanostructures. Our work bridges the gap between covalent bonding taking place at an atomic level and colloidal bonding occurring at the length scale two orders of magnitude larger and broadens the methods for nanomaterial fabrication.

     
    more » « less