skip to main content


Title: Prospects of Feral Crop De Novo Redomestication
Abstract

Modern agriculture depends on a narrow variety of crop species, leaving global food and nutritional security highly vulnerable to the adverse effects of climate change and population expansion. Crop improvement using conventional and molecular breeding approaches leveraging plant genetic diversity using crop wild relatives (CWRs) has been one approach to address these issues. However, the rapid pace of the global change requires additional innovative solutions to adapt agriculture to meet global needs. Neodomestication—the rapid and targeted introduction of domestication traits using introgression or genome editing of CWRs—is being explored as a supplementary approach. These methods show promise; however, they have so far been limited in efficiency and applicability. We propose expanding the scope of neodomestication beyond truly wild CWRs to include feral crops as a source of genetic diversity for novel crop development, in this case ‘redomestication’. Feral crops are plants that have escaped cultivation and evolved independently, typically adapting to their local environments. Thus, feral crops potentially contain valuable adaptive features while retaining some domestication traits. Due to their genetic proximity to crop species, feral crops may be easier targets for de novo domestication (i.e. neodomestication via genome editing techniques). In this review, we explore the potential of de novo redomestication as an application for novel crop development by genome editing of feral crops. This approach to efficiently exploit plant genetic diversity would access an underutilized reservoir of genetic diversity that could prove important in support of global food insecurity in the face of the climate change.

 
more » « less
NSF-PAR ID:
10368552
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Plant and Cell Physiology
ISSN:
0032-0781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly ofS. viridisand de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a ‘loss of shattering’ trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR–Cas9 genome editing, we validatedLess Shattering1(SvLes1) as a gene whose product controls seed shattering. InS. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering alleleSiLes1-TE(transposable element). This resource will enhance the utility ofS. viridisfor dissection of complex traits and biotechnological improvement of panicoid crops.

     
    more » « less
  2. Societal Impact Statement

    Given the rapidly increasing drought and temperature stresses associated with climate change, innovative approaches for food security are imperative. One understudied opportunity is using feral crops—plants that have escaped and persisted without cultivation—as a source of genetic diversity, which could build resilience in domesticated conspecifics. In some cases, however, feral plants vigorously compete with crops as weeds, challenging food security. By bridging historically siloed ecological, agronomic, and evolutionary lines of inquiry into feral crops, there is the opportunity to improve food security and understand this relatively understudied anthropogenic phenomenon.

    Summary

    The phenomenon of feral crops, that is, free‐living populations that have established outside cultivation, is understudied. Some researchers focus on the negative consequences of domestication, whereas others assert that feral populations may serve as useful pools of genetic diversity for future crop improvement. Although research on feral crops and the process of feralization has advanced rapidly in the last two decades, generalizable insights have been limited by a lack of comparative research across crop species and other factors. To improve international coordination of research on this topic, we summarize the current state of feralization research and chart a course for future study by consolidating outstanding questions in the field. These questions, which emerged from the colloquium “Darwins' reversals: What we now know about Feralization and Crop Wild Relatives” at the BOTANY 2021 conference, fall into seven categories that span both basic and applied research: (1) definitions and drivers of ferality, (2) genetic architecture and pathway, (3) evolutionary history and biogeography, (4) agronomy and breeding, (5) fundamental and applied ecology, (6) collecting and conservation, and (7) taxonomy and best practices. These questions serve as a basis for ferality researchers to coordinate research in these areas, potentially resulting in major contributions to food security in the face of climate change.

     
    more » « less
  3. Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes. 
    more » « less
  4. null (Ed.)
    Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture. 
    more » « less
  5. Abstract

    Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.

     
    more » « less