skip to main content

Title: Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations

Pandemics caused by pathogens that originate in wildlife highlight the importance of understanding the behavioral ecology of disease outbreaks at human–wildlife interfaces. Specifically, the relative effects of human–wildlife and wildlife-wildlife interactions on disease outbreaks among wildlife populations in urban and peri-urban environments remain unclear. We used social network analysis and epidemiological Susceptible-Infected-Recovered models to simulate zooanthroponotic outbreaks, through wild animals’ joint propensities to co-interact with humans, and their social grooming of conspecifics. On 10 groups of macaques (Macacaspp.) in peri-urban environments in Asia, we collected behavioral data using event sampling of human–macaque interactions within the same time and space, and focal sampling of macaques’ social interactions with conspecifics and overall anthropogenic exposure. Model-predicted outbreak sizes were related to structural features of macaques’ networks. For all three species, and for both anthropogenic (co-interactions) and social (grooming) contexts, outbreak sizes were positively correlated to the network centrality of first-infected macaques. Across host species and contexts, the above effects were stronger through macaques’ human co-interaction networks than through their grooming networks, particularly for rhesus and bonnet macaques. Long-tailed macaques appeared to show intraspecific variation in these effects. Our findings suggest that among wildlife in anthropogenically-impacted environments, the structure of their aggregations around more » anthropogenic factors makes them more vulnerable to zooanthroponotic outbreaks than their social structure. The global features of these networks that influence disease outbreaks, and their underlying socio-ecological covariates, need further investigation. Animals that consistently interact with both humans and their conspecifics are important targets for disease control.

« less
; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Scientific Reports
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite increasing conflict at human–wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human–wildlife interactions. Adopting a comparative approach, we examined the impact of animals’ life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human–interaction data for 11–20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better informmore »efforts to minimize conflict-related costs and zoonotic-risk.

    « less
  2. Recent spillback events of SARS-CoV-2 from humans to animals has raised concerns about it becoming endemic in wildlife. A sylvatic cycle of SARS-CoV-2 could present multiple opportunities for repeated spillback into human populations and other susceptible wildlife. Based on their taxonomy and natural history, two native North American wildlife species —the striped skunk ( Mephitis mephitis ) and the raccoon ( Procyon lotor) —represent a high likelihood of susceptibility and ecological opportunity of becoming infected with SARS-CoV-2. Eight skunks and raccoons were each intranasally inoculated with one of two doses of the virus (10 3 PFU and 10 5 PFU) and housed in pairs. To evaluate direct transmission, a naïve animal was added to each inoculated pair 48 h post-inoculation. Four control animals of each species were handled like the experimental groups. At predetermined intervals, we collected nasal and rectal swabs to quantify virus shed via virus isolation and detect viral RNA via rRT-PCR and blood for serum neutralization. Lastly, animals were euthanized at staggered intervals to describe disease progression through histopathology and immunohistochemistry. No animals developed clinical disease. All intranasally inoculated animals seroconverted, suggesting both species are susceptible to SARS-CoV-2 infection. The highest titers in skunks and raccoons weremore »1:128 and 1:64, respectively. Low quantities of virus were isolated from 2/8 inoculated skunks for up to day 5 post-inoculation, however no virus was isolated from inoculated raccoons or direct contacts of either species. Neither species had gross lesions, but recovering mild chronic pneumonia consistent with viral insult was recorded histologically in 5/8 inoculated skunks. Unlike another SARS-CoV-2 infection trial in these species, we detected neutralizing antibodies in inoculated raccoons; thus, future wildlife serologic surveillance results must be interpreted with caution. Due to the inability to isolate virus from raccoons, the lack of evidence of direct transmission between both species, and low amount of virus shed by skunks, it seems unlikely for SARS-CoV-2 to become established in raccoon and skunk populations and for virus to spillback into humans. Continued outbreaks in non-domestic species, wild and captive, highlight that additional research on the susceptibility of SARS-CoV-2 in wildlife, especially musteloidea, and of conservation concern, is needed.« less
  3. Hayes, Loren (Ed.)
    Abstract As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactivemore »to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats.« less
  4. Abstract

    Anthropogenic disturbances are widely recognized for their far-reaching consequences on the survival and reproduction of wildlife, but we understand comparatively little about their effects on the social lives of group-living animals. Here we examined these short-term changes in affiliative behavior as part of a long-term study on a human-tolerant and socially flexible population of California ground squirrels (Otospermophilus beecheyi). We used social network analysis to examine short-term changes in affiliative behavior and individual consistency in response to disturbances by humans, domestic dogs, or a natural predator (the coyote). Overall, juveniles were more involved than adults in affiliative interactions, but the short-term directional effects of these acute disturbances on social cohesion varied by disturbance type. Human and dog presence reduced aboveground connectivity, particularly for juveniles, whereas disturbances by coyotes generally promoted it. Beyond these effects, we also detected non-random responses to disturbances, though individuals were not very consistent in their directional response to different disturbance types. Our results demonstrate the flexible changes in social behavior triggered by short-term disturbances imposed by humans and other threats. More generally, our findings elucidate the underappreciated sensitivity of animal social interactions to short-term ecological disturbances, raising key questions about their consequences on the socialmore »lives of animals.

    « less
  5. Low, Jenny (Ed.)
    Yellow fever virus (YFV) is the etiological agent of yellow fever (YF), an acute hemorrhagic vector-borne disease with a significant impact on public health, is endemic across tropical regions in Africa and South America. The virus is maintained in two ecologically and evolutionary distinct transmission cycles: an enzootic, sylvatic cycle, where the virus circulates between arboreal Aedes species mosquitoes and non-human primates, and a human or urban cycle, between humans and anthropophilic Aedes aegypti mosquitoes. While the urban transmission cycle has been eradicated by a highly efficacious licensed vaccine, the enzootic transmission cycle is not amenable to control interventions, leading to recurrent epizootics and spillover outbreaks into human populations. The nature of YF transmission dynamics is multifactorial and encompasses a complex system of biotic, abiotic, and anthropogenic factors rendering predictions of emergence highly speculative. The recent outbreaks in Africa and Brazil clearly remind us of the significant impact YF emergence events pose on human and animal health. The magnitude of the Brazilian outbreak and spillover in densely populated areas outside the recommended vaccination coverage areas raised the specter of human — to — human transmission and re-establishment of enzootic cycles outside the Amazon basin. Herein, we review the factors thatmore »influence the re-emergence potential of YFV in the neotropics and offer insights for a constellation of coordinated approaches to better predict and control future YF emergence events.« less