skip to main content


Title: Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations
Abstract

Pandemics caused by pathogens that originate in wildlife highlight the importance of understanding the behavioral ecology of disease outbreaks at human–wildlife interfaces. Specifically, the relative effects of human–wildlife and wildlife-wildlife interactions on disease outbreaks among wildlife populations in urban and peri-urban environments remain unclear. We used social network analysis and epidemiological Susceptible-Infected-Recovered models to simulate zooanthroponotic outbreaks, through wild animals’ joint propensities to co-interact with humans, and their social grooming of conspecifics. On 10 groups of macaques (Macacaspp.) in peri-urban environments in Asia, we collected behavioral data using event sampling of human–macaque interactions within the same time and space, and focal sampling of macaques’ social interactions with conspecifics and overall anthropogenic exposure. Model-predicted outbreak sizes were related to structural features of macaques’ networks. For all three species, and for both anthropogenic (co-interactions) and social (grooming) contexts, outbreak sizes were positively correlated to the network centrality of first-infected macaques. Across host species and contexts, the above effects were stronger through macaques’ human co-interaction networks than through their grooming networks, particularly for rhesus and bonnet macaques. Long-tailed macaques appeared to show intraspecific variation in these effects. Our findings suggest that among wildlife in anthropogenically-impacted environments, the structure of their aggregations around anthropogenic factors makes them more vulnerable to zooanthroponotic outbreaks than their social structure. The global features of these networks that influence disease outbreaks, and their underlying socio-ecological covariates, need further investigation. Animals that consistently interact with both humans and their conspecifics are important targets for disease control.

 
more » « less
NSF-PAR ID:
10368583
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite increasing conflict at human–wildlife interfaces, there exists little research on how the attributes and behavior of individual wild animals may influence human–wildlife interactions. Adopting a comparative approach, we examined the impact of animals’ life-history and social attributes on interactions between humans and (peri)urban macaques in Asia. For 10 groups of rhesus, long-tailed, and bonnet macaques, we collected social behavior, spatial data, and human–interaction data for 11–20 months on pre-identified individuals. Mixed-model analysis revealed that, across all species, males and spatially peripheral individuals interacted with humans the most, and that high-ranking individuals initiated more interactions with humans than low-rankers. Among bonnet macaques, but not rhesus or long-tailed macaques, individuals who were more well-connected in their grooming network interacted more frequently with humans than less well-connected individuals. From an evolutionary perspective, our results suggest that individuals incurring lower costs related to their life-history (males) and resource-access (high rank; strong social connections within a socially tolerant macaque species), but also higher costs on account of compromising the advantages of being in the core of their group (spatial periphery), are the most likely to take risks by interacting with humans in anthropogenic environments. From a conservation perspective, evaluating individual behavior will better inform efforts to minimize conflict-related costs and zoonotic-risk.

     
    more » « less
  2. Abstract Objectives

    The impact of anthropogenic environmental changes may impose strong pressures on the behavioral flexibility of free‐ranging animals. Here, we examine whether rates of interactions with humans had both adirectandindirectinfluence on the duration and distribution of social grooming in commensal rhesus macaques (Macaca mulatta).

    Materials and Methods

    Data were collected in two locations in the city of Shimla in northern India: an urban setting and a temple area. We divided these two locations in a series of similar‐sized physical blocks (N = 48) with varying rates of human–macaque interactions. We conducted focal observations on three free‐ranging rhesus macaque groups, one in the urban area and two in the temple area.

    Results

    Our analysis shows that macaques engaged in shorter grooming bouts and were more vigilant while grooming in focal sessions during which they interacted with people more frequently, suggesting that humans directly affected grooming effort and vigilance behavior. Furthermore, we found that in blocks characterized by higher rates of human–macaque interactions grooming bouts were shorter, more frequently interrupted by vigilance behavior, and were less frequently reciprocated.

    Discussion

    Our work shows that the rates of human–macaque interaction had both a direct and indirect impact on grooming behavior and that macaques flexibly modified their grooming interactions in relation to the rates of human–macaque interaction to which they were exposed. Because grooming has important social and hygienic functions in nonhuman primates, our work suggests that human presence can have important implications for animal health, social relationships and, ultimately, fitness. Our results point to the need of areas away from people even for highly adaptable species where they can engage in social interactions without human disruption.

     
    more » « less
  3. The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record—a long-term archive of human–animal–environmental interactions—has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and ‘disease-scapes’ from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the ‘-omics’ can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.

     
    more » « less
  4. Recent spillback events of SARS-CoV-2 from humans to animals has raised concerns about it becoming endemic in wildlife. A sylvatic cycle of SARS-CoV-2 could present multiple opportunities for repeated spillback into human populations and other susceptible wildlife. Based on their taxonomy and natural history, two native North American wildlife species —the striped skunk ( Mephitis mephitis ) and the raccoon ( Procyon lotor) —represent a high likelihood of susceptibility and ecological opportunity of becoming infected with SARS-CoV-2. Eight skunks and raccoons were each intranasally inoculated with one of two doses of the virus (10 3 PFU and 10 5 PFU) and housed in pairs. To evaluate direct transmission, a naïve animal was added to each inoculated pair 48 h post-inoculation. Four control animals of each species were handled like the experimental groups. At predetermined intervals, we collected nasal and rectal swabs to quantify virus shed via virus isolation and detect viral RNA via rRT-PCR and blood for serum neutralization. Lastly, animals were euthanized at staggered intervals to describe disease progression through histopathology and immunohistochemistry. No animals developed clinical disease. All intranasally inoculated animals seroconverted, suggesting both species are susceptible to SARS-CoV-2 infection. The highest titers in skunks and raccoons were 1:128 and 1:64, respectively. Low quantities of virus were isolated from 2/8 inoculated skunks for up to day 5 post-inoculation, however no virus was isolated from inoculated raccoons or direct contacts of either species. Neither species had gross lesions, but recovering mild chronic pneumonia consistent with viral insult was recorded histologically in 5/8 inoculated skunks. Unlike another SARS-CoV-2 infection trial in these species, we detected neutralizing antibodies in inoculated raccoons; thus, future wildlife serologic surveillance results must be interpreted with caution. Due to the inability to isolate virus from raccoons, the lack of evidence of direct transmission between both species, and low amount of virus shed by skunks, it seems unlikely for SARS-CoV-2 to become established in raccoon and skunk populations and for virus to spillback into humans. Continued outbreaks in non-domestic species, wild and captive, highlight that additional research on the susceptibility of SARS-CoV-2 in wildlife, especially musteloidea, and of conservation concern, is needed. 
    more » « less
  5. Introduction

    Human-wildlife coexistence in cities depends on how residents perceive and interact with wildlife in their neighborhoods. An individual’s attitudes toward and responses to wildlife are primarily shaped by their subjective cognitive judgments, including multi-faceted environmental values and perceptions of risks or safety. However, experiences with wildlife could also positively or negatively affect an individual’s environmental attitudes, including their comfort living near wildlife. Previous work on human-wildlife coexistence has commonly focused on rural environments and on conflicts with individual problem species, while positive interactions with diverse wildlife communities have been understudied.

    Methods

    Given this research gap, we surveyed wildlife attitudes of residents across twelve neighborhoods in the Phoenix Metropolitan Area, AZ to ask: how do the environments in which residents live, as well as their values, identities, and personal characteristics, explain the degree to which they are comfortable living near different wildlife groups (coyotes, foxes, and rabbits)?

    Results

    We found that residents who were more comfortable living near wildlife commonly held pro-wildlife value orientations, reflecting the expectation that attitudes toward wildlife are primarily driven be an individual’s value-based judgements. However, attitudes were further influenced by sociodemographic factors (e.g., pet ownership, gender identity), as well as environmental factors that influence the presence of and familiarity with wildlife. Specifically, residents living closer to desert parks and preserves were more likely to have positive attitudes toward both coyotes and foxes, species generally regarded by residents as riskier to humans and domestic animals.

    Discussion

    By improving understanding of people’s attitudes toward urban wildlife, these results can help managers effectively evaluate the potential for human-wildlife coexistence through strategies to mitigate risk and facilitate stewardship.

     
    more » « less