skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal effect random forest of interaction trees for learning individualized treatment regimes with multiple treatments in observational studies
Individuals may respond to treatments with significant heterogeneity. To optimize the treatment effect, it is necessary to recommend treatments based on individual characteristics. Existing methods in the literature for learning individualized treatment regimes are usually designed for randomized studies with binary treatments. In this study, we propose an algorithm to extend random forest of interaction trees (Su et al., 2009) to accommodate multiple treatments. By integrating the generalized propensity score into the interaction tree growing process, the proposed method can handle both randomized and observational study data with multiple treatments. The performance of the proposed method, relative to existing approaches in the literature, is evaluated through simulation studies. The proposed method is applied to an assessment of multiple voluntary educational programmes at a large public university.  more » « less
Award ID(s):
1633130
PAR ID:
10368595
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Stat
Volume:
11
Issue:
1
ISSN:
2049-1573
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The individualized treatment rule (ITR), which recommends an optimal treatment based on individual characteristics, has drawn considerable interest from many areas such as precision medicine, personalized education, and personalized marketing. Existing ITR estimation methods mainly adopt 1 of 2 or more treatments. However, a combination of multiple treatments could be more powerful in various areas. In this paper, we propose a novel double encoder model (DEM) to estimate the ITR for combination treatments. The proposed double encoder model is a nonparametric model which not only flexibly incorporates complex treatment effects and interaction effects among treatments but also improves estimation efficiency via the parameter-sharing feature. In addition, we tailor the estimated ITR to budget constraints through a multi-choice knapsack formulation, which enhances our proposed method under restricted-resource scenarios. In theory, we provide the value reduction bound with or without budget constraints, and an improved convergence rate with respect to the number of treatments under the DEM. Our simulation studies show that the proposed method outperforms the existing ITR estimation in various settings. We also demonstrate the superior performance of the proposed method in patient-derived xenograft data that recommends optimal combination treatments to shrink the tumour size of the colorectal cancer. 
    more » « less
  2. Methicillin-resistant Staphylococcus aureus (MRSA) is a type of bacteria resistant to certain antibiotics, making it difficult to prevent MRSA infections. Among decades of efforts to conquer infectious diseases caused by MRSA, many studies have been proposed to estimate the causal effects of close contact (treatment) on MRSA infection (outcome) from observational data. In this problem, the treatment assignment mechanism plays a key role as it determines the patterns of missing counterfactuals --- the fundamental challenge of causal effect estimation. Most existing observational studies for causal effect learning assume that the treatment is assigned individually for each unit. However, on many occasions, the treatments are pairwisely assigned for units that are connected in graphs, i.e., the treatments of different units are entangled. Neglecting the entangled treatments can impede the causal effect estimation. In this paper, we study the problem of causal effect estimation with treatment entangled in a graph. Despite a few explorations for entangled treatments, this problem still remains challenging due to the following challenges: (1) the entanglement brings difficulties in modeling and leveraging the unknown treatment assignment mechanism; (2) there may exist hidden confounders which lead to confounding biases in causal effect estimation; (3) the observational data is often time-varying. To tackle these challenges, we propose a novel method NEAT, which explicitly leverages the graph structure to model the treatment assignment mechanism, and mitigates confounding biases based on the treatment assignment modeling. We also extend our method into a dynamic setting to handle time-varying observational data. Experiments on both synthetic datasets and a real-world MRSA dataset validate the effectiveness of the proposed method, and provide insights for future applications. 
    more » « less
  3. Abstract Understanding treatment effect heterogeneity has become an increasingly popular task in various fields, as it helps design personalized advertisements in e-commerce or targeted treatment in biomedical studies. However, most of the existing work in this research area focused on either analysing observational data based on strong causal assumptions or conducting post hoc analyses of randomized controlled trial data, and there has been limited effort dedicated to the design of randomized experiments specifically for uncovering treatment effect heterogeneity. In the manuscript, we develop a framework for designing and analysing response adaptive experiments toward better learning treatment effect heterogeneity. Concretely, we provide response adaptive experimental design frameworks that sequentially revise the data collection mechanism according to the accrued evidence during the experiment. Such design strategies allow for the identification of subgroups with the largest treatment effects with enhanced statistical efficiency. The proposed frameworks not only unify adaptive enrichment designs and response-adaptive randomization designs but also complement A/B test designs in e-commerce and randomized trial designs in clinical settings. We demonstrate the merit of our design with theoretical justifications and in simulation studies with synthetic e-commerce and clinical trial data. 
    more » « less
  4. Abstract Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges of achieving this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment effect. To address this problem, we consider a heterogeneous regression model which allows the coefficients for treatment variables to be subject-dependent with unknown grouping information. We develop a concave fusion penalized method for estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator based on a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects using the proposed method. The proposed method is illustrated in simulation studies and illustrated with real data from an AIDS Clinical Trials Group Study. 
    more » « less
  5. The causal effect of a treatment can vary from person to per-son based on their individual characteristics and predispositions. Mining for patterns of individual-level effect differences, a problem known as heterogeneous treatment effect estimation, has many important applications, from precision medicine to recommender systems. In this paper we define and study a variant of this problem in which an individual-level threshold in treatment needs to be reached, in order to trigger an effect. One of the main contributions of our work is that we do not only estimate heterogeneous treatment effects with fixed treatments but can also prescribe individualized treatments. We propose a tree-based learning method to find the heterogeneity in the treatment effects. Our experimental results on multiple datasets show that our approach can learn the triggers better than existing approaches. 
    more » « less