skip to main content


Title: Longitudinal changes in auditory and reward systems following receptive music-based intervention in older adults
Abstract

Listening to pleasurable music is known to engage the brain’s reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain’s auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.

 
more » « less
Award ID(s):
1945436
NSF-PAR ID:
10368664
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neural entrainment to musical rhythm is thought to underlie the perception and production of music. In aging populations, the strength of neural entrainment to rhythm has been found to be attenuated, particularly during attentive listening to auditory streams. However, previous studies on neural entrainment to rhythm and aging have often employed artificial auditory rhythms or limited pieces of recorded, naturalistic music, failing to account for the diversity of rhythmic structures found in natural music. As part of larger project assessing a novel music-based intervention for healthy aging, we investigated neural entrainment to musical rhythms in the electroencephalogram (EEG) while participants listened to self-selected musical recordings across a sample of younger and older adults. We specifically measured neural entrainment to the level of musical pulse—quantified here as the phase-locking value (PLV)—after normalizing the PLVs to each musical recording’s detected pulse frequency. As predicted, we observed strong neural phase-locking to musical pulse, and to the sub-harmonic and harmonic levels of musical meter. Overall, PLVs were not significantly different between older and younger adults. This preserved neural entrainment to musical pulse and rhythm could support the design of music-based interventions that aim to modulate endogenous brain activity via self-selected music for healthy cognitive aging. 
    more » « less
  2. Abstract

    Listening to music is an enjoyable behaviour that engages multiple networks of brain regions. As such, the act of music listening may offer a way to interrogate network activity, and to examine the reconfigurations of brain networks that have been observed in healthy aging. The present study is an exploratory examination of brain network dynamics during music listening in healthy older and younger adults. Network measures were extracted and analyzed together with behavioural data using a combination of hidden Markov modelling and partial least squares. We found age- and preference-related differences in fMRI data collected during music listening in healthy younger and older adults. Both age groups showed higher occupancy (the proportion of time a network was active) in a temporal-mesolimbic network while listening to self-selected music. Activity in this network was strongly positively correlated with liking and familiarity ratings in younger adults, but less so in older adults. Additionally, older adults showed a higher degree of correlation between liking and familiarity ratings consistent with past behavioural work on age-related dedifferentiation. We conclude that, while older adults do show network and behaviour patterns consistent with dedifferentiation, activity in the temporal-mesolimbic network is relatively robust to dedifferentiation. These findings may help explain how music listening remains meaningful and rewarding in old age.

     
    more » « less
  3. Engaging in musical activities throughout the lifespan may protect against age-related cognitive decline and modify structural and functional connectivity in the brain. Prior research suggests that musical experience modulates brain regions that integrate different modalities of sensory information, such as the insula. Most of this research has been performed in individuals classified as professional musicians; however, general musical experiences across the lifespan may also confer beneficial effects on brain health in older adults. The current study investigated whether general musical experience, characterized using the Goldsmith Music Sophistication Index (Gold-MSI), was associated with functional connectivity in older adults (age = 65.7 ± 4.4, n = 69). We tested whether Gold-MSI was associated with individual differences in the functional connectivity of three a priori hypothesis-defined seed regions in the insula (i.e., dorsal anterior, ventral anterior, and posterior insula). We found that older adults with more musical experience showed greater functional connectivity between the dorsal anterior insula and the precentral and postcentral gyrus, and between the ventral anterior insula and diverse brain regions, including the insula and prefrontal cortex, and decreased functional connectivity between the ventral anterior insula and thalamus (voxel p < 0.01, cluster FWE p < 0.05). Follow-up correlation analyses showed that the singing ability subscale score was key in driving the association between functional connectivity differences and musical experience. Overall, our findings suggest that musical experience, even among non-professional musicians, is related to functional brain reorganization in older adults. 
    more » « less
  4. Abstract

    Music frequently elicits intense emotional responses, a phenomenon that has been scrutinized from multiple disciplines that span the sciences and arts. While most people enjoy music and find it rewarding, there is substantial individual variability in the experience and degree of music‐induced reward. Here, we review current work on the neural substrates of hedonic responses to music. In particular, we focus the present review on specific musical anhedonia, a selective lack of pleasure from music. Based on evidence from neuroimaging, neuropsychology, and brain stimulation studies, we derive a neuroanatomical model of the experience of pleasure during music listening. Our model posits that hedonic responses to music are the result of connectivity between structures involved in auditory perception as a predictive process, and those involved in the brain's dopaminergic reward system. We conclude with open questions and implications of this model for future research on why humans appreciate music.

     
    more » « less
  5. Abstract

    The brain's functional architecture and organization undergo continual development and modification throughout adolescence. While it is well known that multiple factors govern brain maturation, the constantly evolving patterns of time‐resolved functional connectivity are still unclear and understudied. We systematically evaluated over 47,000 youth and adult brains to bridge this gap, highlighting replicable time‐resolved developmental and aging functional brain patterns. The largest difference between the two life stages was captured in a brain state that indicated coherent strengthening and modularization of functional coupling within the auditory, visual, and motor subdomains, supplemented by anticorrelation with other subdomains in adults. This distinctive pattern, which we replicated in independent data, was consistently less modular or absent in children and presented a negative association with age in adults, thus indicating an overall inverted U‐shaped trajectory. This indicates greater synchrony, strengthening, modularization, and integration of the brain's functional connections beyond adolescence, and gradual decline of this pattern during the healthy aging process. We also found evidence that the developmental changes may also bring along a departure from the canonical static functional connectivity pattern in favor of more efficient and modularized utilization of the vast brain interconnections. State‐based statistical summary measures presented robust and significant group differences that also showed significant age‐related associations. The findings reported in this article support the idea of gradual developmental and aging brain state adaptation processes in different phases of life and warrant future research via lifespan studies to further authenticate the projected time‐resolved brain state trajectories.

     
    more » « less