It is important to understand the cycle of baryons through the circumgalactic medium (CGM) in the context of galaxy formation and evolution. In this study, we forecast constraints on the feedback processes heating the CGM with current and future Sunyaev–Zeldovich (SZ) observations. To constrain these processes, we use a suite of cosmological simulations, the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). CAMELS varies four different feedback parameters of two previously existing hydrodynamical simulations, IllustrisTNG and SIMBA. We capture the dependences of SZ radial profiles on these feedback parameters with an emulator, calculate their derivatives, and forecast future constraints on these feedback parameters from upcoming experiments. We find that for a galaxy sample similar to what would be obtained with the Dark Energy Spectroscopic Instrument at the Simons Observatory, all four feedback parameters can be constrained (some within the 10% level), indicating that future observations will be able to further restrict the parameter space for these subgrid models. Given the modeled galaxy sample and forecasted errors in this work, we find that the inner SZ profiles contribute more to the constraining power than the outer profiles. Finally, we find that, despite the wide range of parameter variation in active galactic feedback in the CAMELS simulation suite, we cannot reproduce the thermal SZ signal of galaxies selected by the Baryon Oscillation Spectroscopic Survey as measured by the Atacama Cosmology Telescope.
more »
« less
The Circumgalactic Medium from the CAMELS Simulations: Forecasting Constraints on Feedback Processes from Future Sunyaev–Zeldovich Observations
Abstract It is important to understand the cycle of baryons through the circumgalactic medium (CGM) in the context of galaxy formation and evolution. In this study, we forecast constraints on the feedback processes heating the CGM with current and future Sunyaev–Zeldovich (SZ) observations. To constrain these processes, we use a suite of cosmological simulations, the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS). CAMELS varies four different feedback parameters of two previously existing hydrodynamical simulations, IllustrisTNG and SIMBA. We capture the dependences of SZ radial profiles on these feedback parameters with an emulator, calculate their derivatives, and forecast future constraints on these feedback parameters from upcoming experiments. We find that for a galaxy sample similar to what would be obtained with the Dark Energy Spectroscopic Instrument at the Simons Observatory, all four feedback parameters can be constrained (some within the 10% level), indicating that future observations will be able to further restrict the parameter space for these subgrid models. Given the modeled galaxy sample and forecasted errors in this work, we find that the inner SZ profiles contribute more to the constraining power than the outer profiles. Finally, we find that, despite the wide range of parameter variation in active galactic feedback in the CAMELS simulation suite, we cannot reproduce the thermal SZ signal of galaxies selected by the Baryon Oscillation Spectroscopic Survey as measured by the Atacama Cosmology Telescope.
more »
« less
- PAR ID:
- 10368666
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 133
- Size(s):
- Article No. 133
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The circumgalactic medium (CGM) around massive galaxies plays a crucial role in regulating star formation and feedback. Using the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) suite, we develop emulators for the X-ray surface brightness profile and the X-ray luminosity–stellar mass scaling relation, to investigate how stellar and active galactic nucleus (AGN) feedback shape the X-ray properties of the hot CGM. Our analysis shows that at CGM scales (1012 Mhalo/Me 1013, 10 r kpc−1 400), stellar feedback more significantly impacts the X-ray properties than AGN feedback within the parameters studied. Comparing the emulators to recent eROSITA All Sky Survey (eRASS) observations, it is found that stronger feedback than is currently implemented in the IllustrisTNG, SIMBA, and Astrid simulations is required to match the observed CGM properties. However, adopting these enhanced feedback parameters causes deviations in the stellar mass–halo mass relations from observational constraints below the group-mass scale. This tension suggests possible unaccounted for systematics in X-ray CGM observations or inadequacies in the feedback models of cosmological simulations.more » « less
-
ABSTRACT Feedback from active galactic nuclei (AGNs) and supernovae can affect measurements of integrated Sunyaev–Zeldovich (SZ) flux of haloes (YSZ) from cosmic microwave background (CMB) surveys, and cause its relation with the halo mass (YSZ–M) to deviate from the self-similar power-law prediction of the virial theorem. We perform a comprehensive study of such deviations using CAMELS, a suite of hydrodynamic simulations with extensive variations in feedback prescriptions. We use a combination of two machine learning tools (random forest and symbolic regression) to search for analogues of the Y–M relation which are more robust to feedback processes for low masses ($$M\lesssim 10^{14}\, \mathrm{ h}^{-1} \, \mathrm{ M}_\odot$$); we find that simply replacing Y → Y(1 + M*/Mgas) in the relation makes it remarkably self-similar. This could serve as a robust multiwavelength mass proxy for low-mass clusters and galaxy groups. Our methodology can also be generally useful to improve the domain of validity of other astrophysical scaling relations. We also forecast that measurements of the Y–M relation could provide per cent level constraints on certain combinations of feedback parameters and/or rule out a major part of the parameter space of supernova and AGN feedback models used in current state-of-the-art hydrodynamic simulations. Our results can be useful for using upcoming SZ surveys (e.g. SO, CMB-S4) and galaxy surveys (e.g. DESI and Rubin) to constrain the nature of baryonic feedback. Finally, we find that the alternative relation, Y–M*, provides complementary information on feedback than Y–M.more » « less
-
Abstract We present CAMELS-ASTRID, the third suite of hydrodynamical simulations in the Cosmology and Astrophysics with MachinE Learning (CAMELS) project, along with new simulation sets that extend the model parameter space based on the previous frameworks of CAMELS-TNG and CAMELS-SIMBA, to provide broader training sets and testing grounds for machine-learning algorithms designed for cosmological studies. CAMELS-ASTRID employs the galaxy formation model following the ASTRID simulation and contains 2124 hydrodynamic simulation runs that vary three cosmological parameters (Ωm,σ8, Ωb) and four parameters controlling stellar and active galactic nucleus (AGN) feedback. Compared to the existing TNG and SIMBA simulation suites in CAMELS, the fiducial model of ASTRID features the mildest AGN feedback and predicts the least baryonic effect on the matter power spectrum. The training set of ASTRID covers a broader variation in the galaxy populations and the baryonic impact on the matter power spectrum compared to its TNG and SIMBA counterparts, which can make machine-learning models trained on the ASTRID suite exhibit better extrapolation performance when tested on other hydrodynamic simulation sets. We also introduce extension simulation sets in CAMELS that widely explore 28 parameters in the TNG and SIMBA models, demonstrating the enormity of the overall galaxy formation model parameter space and the complex nonlinear interplay between cosmology and astrophysical processes. With the new simulation suites, we show that building robust machine-learning models favors training and testing on the largest possible diversity of galaxy formation models. We also demonstrate that it is possible to train accurate neural networks to infer cosmological parameters using the high-dimensional TNG-SB28 simulation set.more » « less
-
Abstract Uncertain feedback processes in galaxies affect the distribution of matter, currently limiting the power of weak lensing surveys. If we can identify cosmological statistics that are robust against these uncertainties, or constrain these effects by other means, then we can enhance the power of current and upcoming observations from weak lensing surveys such as DES, Euclid, the Rubin Observatory, and the Roman Space Telescope. In this work, we investigate the potential of the electron density auto-power spectrum as a robust probe of cosmology and baryonic feedback. We use a suite of (magneto-)hydrodynamic simulations from the CAMELS project and perform an idealized analysis to forecast statistical uncertainties on a limited set of cosmological and physically-motivated astrophysical parameters. We find that the electron number density auto-correlation, measurable through either kinematic Sunyaev-Zel'dovich observations or through Fast Radio Burst dispersion measures, provides tight constraints on Ω m and the mean baryon fraction in intermediate-mass halos, f̅ bar . By obtaining an empirical measure for the associated systematic uncertainties, we find these constraints to be largely robust to differences in baryonic feedback models implemented in hydrodynamic simulations. We further discuss the main caveats associated with our analysis, and point out possible directions for future work.more » « less
An official website of the United States government
