skip to main content


Title: An investigation of gecko attachment on wet and rough substrates leads to the application of surface roughness power spectral density analysis
Abstract

The roughness and wettability of surfaces exploited by free-ranging geckos can be highly variable and attachment to these substrates is context dependent (e.g., presence or absence of surface water). Although previous studies focus on the effect of these variables on attachment independently, geckos encounter a variety of conditions in their natural environment simultaneously. Here, we measured maximum shear load of geckos in air and when their toes were submerged underwater on substrates that varied in both surface roughness and wettability. Gecko attachment was greater in water than in air on smooth and rough hydrophobic substrates, and attachment to rough hydrophilic substrates did not differ when tested in air or water. Attachment varied considerably with surface roughness and characterization revealed that routine measurements of root mean square height can misrepresent the complexity of roughness, especially when measured with single instruments. We used surface roughness power spectra to characterize substrate surface roughness and examined the relationship between gecko attachment performance across the power spectra. This comparison suggests that roughness wavelengths less than 70 nm predominantly dictate gecko attachment. This study highlights the complexity of attachment in natural conditions and the need for comprehensive surface characterization when studying biological adhesive system performance.

 
more » « less
PAR ID:
10368676
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales. Apparent insensitivity of adhesion to variability in roughness is particularly interesting from both a theoretical and applied perspective. Progress on understanding the extent to which and the basis of how the gecko adhesive system is robust to variation in roughness is impeded by the complexity of quantifying roughness of natural surfaces and a dearth of data on free-ranging gecko substrate use. Here we review the main challenges in characterizing rough surfaces as they relate to collecting relevant estimates of variation in gecko adhesive performance across different substrates in their natural habitats. In response to these challenges, we propose a practical protocol (borrowing from thermal biophysical ecological methods) that will enable researchers to design detailed studies of structure–function relationships of the gecko fibrillar system. Employing such an approach will help provide specific hypotheses about how adhesive pad structure translates into a capacity for robust gecko adhesion across large variation in substrate roughness. Preliminary data we present on this approach suggest its promise in advancing the study of how geckos deal with roughness variation. We argue and outline how such data can help advance development of design parameters to improve bioinspired adhesives based on the gecko fibrillar system.

     
    more » « less
  2. null (Ed.)
    Synopsis Animals clinging to natural surfaces have to generate attachment across a range of surface roughnesses in both dry and wet conditions. Plethodontid salamanders can be aquatic, semi-aquatic, terrestrial, arboreal, troglodytic, saxicolous, and fossorial and therefore may need to climb on and over rocks, tree trunks, plant leaves, and stems, as well as move through soil and water. Sixteen species of salamanders were tested to determine the effects of substrate roughness and wetness on maximum cling angle. Substrate roughness had a significant effect on maximum cling angle, an effect that varied among species. Substrates of intermediate roughness (asperity size 100–350 µm) resulted in the poorest attachment performance for all species. Small species performed best on smooth substrates, while large species showed significant improvement on the roughest substrates (asperity size 1000–4000 µm), possibly switching from mucus adhesion on a smooth substrate to an interlocking attachment on rough substrates. Water, in the form of a misted substrate coating and a flowing stream, decreased cling performance in salamanders on smooth substrates. However, small salamanders significantly increased maximum cling angle on wetted substrates of intermediate roughness, compared with the dry condition. Study of cling performance and its relationship to surface properties may cast light onto how this group of salamanders has radiated into the most speciose family of salamanders that occupies diverse habitats across an enormous geographical range. 
    more » « less
  3. null (Ed.)
    Synopsis Arboreal ants must navigate variably sized and inclined linear structures across a range of substrate roughness when foraging tens of meters above the ground. To achieve this, arboreal ants use specialized adhesive pads and claws to maintain effective attachment to canopy substrates. Here, we explored the effect of substrate structure, including small and large-scale substrate roughness, substrate diameter, and substrate orientation (inclination), on adhesion and running speed of workers of one common, intermediately-sized, arboreal ant species. Normal (orthogonal) and shear (parallel) adhesive performance varied on sandpaper and natural leaf substrates, particularly at small size scales, but running speed on these substrates remained relatively constant. Running speed also varied minimally when running up and down inclined substrates, except when the substrate was positioned completely vertical. On vertical surfaces, ants ran significantly faster down than up. Ant running speed was slower on relatively narrow substrates. The results of this study show that variation in the physical properties of tree surfaces differentially affects arboreal ant adhesive and locomotor performance. Specifically, locomotor performance was much more robust to surface roughness than was adhesive performance. The results provide a basis for understanding how performance correlates of functional morphology contribute to determining local ant distributions and foraging decisions in the tropical rainforest canopy. 
    more » « less
  4. Outside laboratory conditions and human-made structures, animals rarely encounter flat surfaces. Instead, natural substrates are uneven surfaces with height variation that ranges from the microscopic scale to the macroscopic scale. For walking animals (which we define as encompassing any form of legged movement across the ground, such as walking, running, galloping, etc.), such substrate ‘roughness’ influences locomotion in a multitude of ways across scales, from roughness that influences how each toe or foot contacts the ground, to larger obstacles that animals must move over or navigate around. Historically, the unpredictability and variability of natural environments has limited the ability to collect data on animal walking biomechanics. However, recent technical advances, such as more sensitive and portable cameras, biologgers, laboratory tools to fabricate rough terrain, as well as the ability to efficiently store and analyze large variable datasets, have expanded the opportunity to study how animals move under naturalistic conditions. As more researchers endeavor to assess walking over rough terrain, we lack a consistent approach to quantifying roughness and contextualizing these findings. This Review summarizes existing literature that examines non-human animals walking on rough terrain and presents a metric for characterizing the relative substrate roughness compared with animal size. This framework can be applied across terrain and body scales, facilitating direct comparisons of walking over rough surfaces in animals ranging in size from ants to elephants. 
    more » « less
  5. ABSTRACT The northern clingfish (Gobiesox maeandricus) has a suction-based adhesive disc that can stick to incredibly rough surfaces, a challenge for stiff commercial suction cups. Both clingfish discs and bioinspired suction cups have stiff cores but flexible edges that can deform to overcome surface irregularities. Compliant surfaces are common in nature and technical settings, but performance data for fish and commercial cups are gathered from stiff surfaces. We quantified the interaction between substrate compliance, surface roughness and suction performance for the northern clingfish, commercial suction cups and three biomimetic suction cups with disc rims of varying compliance. We found that all cups stick better on stiffer substrates and worse on more compliant ones, as indicated by peak stress values. On compliant substrates, surface roughness had little effect on adhesion, even for commercial cups that normally fail on hard, rough surfaces. We propose that suction performance on compliant substrates can be explained in part by effective elastic modulus, the combined elastic modulus from a cup–substrate interaction. Of all the tested cups, the biomimetic cups performed the best on compliant surfaces, highlighting their potential to be used in medical and marine geotechnical fields. Lastly, we discuss the overmolding technique used to generate the bioinspired cups and how it is an important tool for studying biology. 
    more » « less