skip to main content


Title: A Comparative Study of Machine-learning Methods for X-Ray Binary Classification
Abstract

X-ray binaries (XRBs) consist of a compact object that accretes material from an orbiting secondary star. The most secure method we have for determining if the compact object is a black hole is to determine its mass: This is limited to bright objects and requires substantial time-intensive spectroscopic monitoring. With new X-ray sources being discovered with different X-ray observatories, developing efficient, robust means to classify compact objects becomes increasingly important. We compare three machine-learning classification methods (Bayesian Gaussian Processes (BGPs), K-Nearest Neighbors (KNN), Support Vector Machines) for determining whether the compact objects are neutron stars or black holes (BHs) in XRB systems. Each machine-learning method uses spatial patterns that exist between systems of the same type in 3D color–color–intensity diagrams. We used lightcurves extracted using 6 yr of data with MAXI/GSC for 44 representative sources. We find that all three methods are highly accurate in distinguishing pulsing from nonpulsing neutron stars (NPNS) with 95% of NPNS and 100% of pulsars accurately predicted. All three methods have high accuracy in distinguishing BHs from pulsars (92%) but continue to confuse BHs with a subclass of NPNS, called bursters, with KNN doing the best at only 50% accuracy for predicting BHs. The precision of all three methods is high, providing equivalent results over 5–10 independent runs. In future work, we will suggest a fourth dimension be incorporated to mitigate the confusion of BHs with bursters. This work paves the way toward more robust methods to efficiently distinguish BHs, NPNS, and pulsars.

 
more » « less
NSF-PAR ID:
10368677
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 116
Size(s):
["Article No. 116"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations of X-ray binaries indicate a dearth of compact objects in the mass range from ∼2 − 5  M ⊙ . The existence of this (first mass) gap has been used to discriminate between proposed engines behind core-collapse supernovae. From LIGO/Virgo observations of binary compact remnant masses, several candidate first mass gap objects, either neutron stars (NSs) or black holes (BHs), were identified during the O3 science run. Motivated by these new observations, we study the formation of BH-NS mergers in the framework of isolated classical binary evolution, using population synthesis methods to evolve large populations of binary stars (Population I and II) across cosmic time. We present results on the NS to BH mass ratios ( q  =  M NS / M BH ) in merging systems, showing that although systems with a mass ratio as low as q  = 0.02 can exist, typically BH-NS systems form with moderate mass ratios q  = 0.1 − 0.2. If we adopt a delayed supernova engine, we conclude that ∼30% of BH-NS mergers may host at least one compact object in the first mass gap (FMG). Even allowing for uncertainties in the processes behind compact object formation, we expect the fraction of BH-NS systems ejecting mass during the merger to be small (from ∼0.6 − 9%). In our reference model, we assume: (i) the formation of compact objects within the FMG, (ii) natal NS/BH kicks decreased by fallback, (iii) low BH spins due to Tayler-Spruit angular momentum transport in massive stars. We find that ≲1% of BH-NS mergers will have any mass ejection and about the same percentage will produce kilonova bright enough to have a chance of being detected with a large (Subaru-class) 8 m telescope. Interestingly, all these mergers will have both a BH and an NS in the FMG. 
    more » « less
  2. Abstract

    Mass measurements from low-mass black hole X-ray binaries (LMXBs) and radio pulsars have been used to identify a gap between the most massive neutron stars (NSs) and the least massive black holes (BHs). BH mass measurements in LMXBs are typically only possible for transient systems: outburst periods enable detection via all-sky X-ray monitors, while quiescent periods enable radial velocity measurements of the low-mass donor. We quantitatively study selection biases due to the requirement of transient behavior for BH mass measurements. Using rapid population synthesis simulations (COSMIC), detailed binary stellar-evolution models (MESA), and the disk instability model of transient behavior, we demonstrate that transient LMXB selection effects introduce observational biases, and can suppress mass-gap BHs in the observed sample. However, we find a population of transient LMXBs with mass-gap BHs form through accretion-induced collapse of an NS during the LMXB phase, which is inconsistent with observations. These results are robust against variations of binary evolution prescriptions. The significance of this accretion-induced collapse population depends upon the maximum NS birth massMNS,birthmax. To reflect the observed dearth of low-mass BHs,COSMICandMESAmodels favorMNS,birthmax2M. In the absence of further observational biases against LMXBs with mass-gap BHs, our results indicate the need for additional physics connected to the modeling of LMXB formation and evolution.

     
    more » « less
  3. Abstract

    In their most recent observing run, the LIGO-Virgo-KAGRA Collaboration observed gravitational waves from compact binary mergers with highly asymmetric mass ratios, including both binary black holes (BBHs) and neutron star-black holes (NSBHs). It appears that NSBHs with mass ratiosq≃ 0.2 are more common than equally asymmetric BBHs, but the reason for this remains unclear. We use the binary population synthesis codecosmicto investigate the evolutionary pathways leading to the formation and merger of asymmetric compact binaries. We find that within the context of isolated binary stellar evolution, most asymmetric mergers start off as asymmetric stellar binaries. Because of the initial asymmetry, these systems tend to first undergo a dynamically unstable mass transfer phase. However, after the first star collapses into a compact object, the mass ratio is close to unity and the second phase of mass transfer is usually stable. According to our simulations, this stable mass transfer fails to shrink the orbit enough on its own for the system to merge. Instead, the natal kick received by the second-born compact object during its collapse is key in determining how many of these systems can merge. For the most asymmetric systems with mass ratios ofq≤ 0.1, the merging systems in our models receive an average kick magnitude of 255 km s−1during the second collapse, while the average kick for non-merging systems is 59 km s−1. Because lower mass compact objects, like neutron stars, are expected to receive larger natal kicks than higher mass BHs, this may explain why asymmetric NSBH systems merge more frequently than asymmetric BBH systems.

     
    more » « less
  4. ABSTRACT

    The discs of active galactic nuclei (AGNs) have emerged as rich environments for the production and capture of stars and the compact objects that they leave behind. These stars produce long gamma-ray bursts (GRBs) at their deaths, while frequent interactions among compact objects form binary neutron stars and neutron star–black hole binaries, leading to short GRBs upon their merger. Predicting the properties of these transients as they emerge from the dense environments of AGN discs is key to their proper identification and to better constrain the star and compact object population in AGN discs. Some of these transients would appear unusual because they take place in much higher densities than the interstellar medium. Others, which are the subject of this paper, would additionally be modified by radiation diffusion, since they are generated within optically thick regions of the accretion discs. Here, we compute the GRB afterglow light curves for diffused GRB sources for a representative variety of central black hole masses and disc locations. We find that the radiation from radio to ultraviolet and soft X-rays can be strongly suppressed by synchrotron self-absorption in the dense medium of the AGN disc. In addition, photon diffusion can significantly delay the emergence of the emission peak, turning a beamed, fast transient into a slow, isotropic, and dimmer one. These would appear as broad-band correlated AGN variability with a dominance at the higher frequencies. Their properties can constrain both the stellar populations within AGN discs and the disc structure.

     
    more » « less
  5. ABSTRACT

    We present multi-epoch spectroscopic follow-up of a sample of ellipsoidal variables selected from Gaia Data Release 3 (DR3) as candidates for hosting quiescent black holes (BHs) and neutron stars (NSs). Our targets were identified as BH/NS candidates because their optical light curves – when interpreted with models that attribute variability to tidal distortion of a star by a companion that contributes negligible light – suggest that the companions are compact objects. From the likely BH/NS candidates identified in recent work accompanying Gaia DR3, we select 14 of the most promising targets for follow-up. We obtained spectra for each object at 2–10 epochs, strategically observing near conjunction to best constrain the radial velocity semi-amplitude. From the measured semi-amplitudes of the radial velocity curves, we derive minimum companion masses of $M_{2,\, \rm min} \le 0.5 \, {\rm M}_{\odot }$ in all cases. Assuming random inclinations, the typical inferred companion mass is $M_2 \sim 0.15\, {\rm M}_{\odot }$. This makes it unlikely that any of these systems contain a BH or NS, and we consider alternative explanations for the observed variability. We can best reproduce the observed light curves and radial velocities with models for unequal-mass contact binaries with star-spots. Some of the objects in our sample may also be detached main-sequence binaries, or even single stars with pulsations or star-spot variability masquerading as ellipsoidal variation. We provide recommendations for future spectroscopic efforts to further characterize this sample and more generally to search for compact object companions in close binaries.

     
    more » « less