skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Investigating Particle Acceleration by Dynamic Small-scale Flux Ropes behind Interplanetary Shocks in the Inner Heliosphere
Abstract

We recently extended our Parker-type transport equation for energetic particle interaction with numerous dynamic small-scale magnetic flux ropes (SMFRs) to include perpendicular diffusion in addition to parallel diffusion. We present a new analytical solution to this equation assuming heliocentric spherical geometry with spherical symmetry for all SMFR acceleration mechanisms present in the transport theory. With the goal of identifying the dominant mechanism(s) through which particles are accelerated by SMFRs, a search was launched to identify events behind interplanetary shocks that could be explained by our new solution and not classical diffusive shock acceleration. Two new SMFR acceleration events were identified in situ for the first time within heliocentric distances of 1 astronomical unit (au) in Helios A data. A Metropolis–Hastings algorithm is employed to fit the new solution to the energetic proton fluxes so that the relative strength of the transport coefficients associated with each SMFR acceleration mechanism can be determined. We conclude that the second-order Fermi mechanism for particle acceleration by SMFRs is more important than first-order Fermi acceleration due to the mean compression of the SMFRs regions during these new events. Furthermore, with the aid of SMFR parameters determined via the Grad–Shafranov reconstruction method, we find that second-order Fermi SMFR acceleration is dominated by the turbulent motional electric field parallel to the guide/background field. Finally, successful reproduction of energetic proton flux data during these SMFR acceleration events also required efficient particle escape from the SMFR acceleration regions.

 
more » « less
PAR ID:
10368701
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
933
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 80
Size(s):
Article No. 80
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has been suggested before that small-scale magnetic flux rope (SMFR) structures in the solar wind can temporarily trap energetic charged particles. We present the derivation of a new fractional Parker equation for energetic-particle interaction with SMFRs from our pitch-angle-dependent fractional diffusion-advection equation that can account for such trapping effects. The latter was derived previously in le Roux & Zank from the first principles starting with the standard focused transport equation. The new equation features anomalous advection and diffusion terms. It suggests that energetic-particle parallel transport occurs with a decaying efficiency of advection effects as parallel superdiffusion becomes more dominant at late times. Parallel superdiffusion can be linked back to underlying anomalous pitch-angle transport, which might be subdiffusive during interaction with quasi-helical coherent SMFRs. We apply the new equation to time-dependent superdiffusive shock acceleration at a parallel shock. The results show that the superdiffusive-shock-acceleration timescale is fractional, the net fractional differential particle flux is conserved across the shock ignoring particle injection at the shock, and the accelerated particle spectrum at the shock converges to the familiar power-law spectrum predicted by standard steady-state diffusive-shock-acceleration theory at late times. Upstream, as parallel superdiffusion progressively dominates the advection of energetic particles, their spatial distributions decay on spatial scales that grow with time. Furthermore, superdiffusive parallel shock acceleration is found to be less efficient if parallel anomalous diffusion is more superdiffusive, while perpendicular particle escape from the shock, thought to be subdiffusive during SMFR interaction, is reduced when increasingly subdiffusive.

     
    more » « less
  2. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  3. Abstract

    Small-scale interplanetary magnetic flux ropes (SMFRs) are similar to ICMEs in magnetic structure, but are smaller and do not exhibit coronal mass ejection plasma signatures. We present a computationally efficient and GPU-powered version of the single-spacecraft automated SMFR detection algorithm based on the Grad–Shafranov (GS) technique. Our algorithm can process higher resolution data, eliminates selection bias caused by a fixed 〈B〉 threshold, has improved detection criteria demonstrated to have better results on an MHD simulation, and recovers full 2.5D cross sections using GS reconstruction. We used it to detect 512,152 SMFRs from 27 yr (1996–2022) of 3 s cadence Wind measurements. Our novel findings are the following: (1) the SMFR filling factor (∼ 35%) is independent of solar activity, distance to the heliospheric current sheet, and solar wind plasma type, although the minority of SMFRs with diameters greater than ∼0.01 au have a strong solar activity dependence; (2) SMFR diameters follow a log-normal distribution that peaks below the resolved range (≳104km), although the filling factor is dominated by SMFRs between 105and 106km; (3) most SMFRs at 1 au have strong field-aligned flows like those from Parker Solar Probe measurements; (4) the radial density (generally ∼1 detected per 106km) and axial magnetic flux density of SMFRs are higher in faster solar wind types, suggesting that they are more compressed. Implications for the origin of SMFRs and switchbacks are briefly discussed. The new algorithm and SMFR dataset are made freely available.

     
    more » « less
  4. Abstract

    The observed energy spectra of accelerated particles at interplanetary shocks often do not match the diffusive shock acceleration (DSA) theory predictions. In some cases, the particle flux forms a plateau over a wide range of energies, extendingupstream of the shockfor up to seven fluxe-folds before submerging into the background spectrum. Remarkably, at and downstream of the shock we have studied in detail, the flux falls off in energy asϵ−1, consistent with the DSA prediction for a strong shock. The upstream plateau suggests a particle transport mechanism different from those traditionally employed in DSA models. We show that a standard (linear) DSA solution based on a widely accepted diffusive particle transport with an underlying resonant wave–particle interaction is inconsistent with the plateau in the particle flux. To resolve this contradiction, we modify the DSA theory in two ways. First, we include a dependence of the particle diffusivityκon the particle fluxF(nonlinear particle transport). Second, we invoke short-scale magnetic perturbations that are self-consistently generated by, but not resonant with, accelerated particles. They lead to the particle diffusivity increasing with the particle energy as ∝ϵ3/2that simultaneously decreases with the particle flux as 1/F. The combination of these two trends results in the flat spectrum upstream. We speculate that nonmonotonic spatial variations of the upstream spectrum, apart from being time-dependent, may also result from non-DSA acceleration mechanisms at work upstream, such as stochastic Fermi or magnetic pumping acceleration.

     
    more » « less
  5. Abstract

    We investigate the role of perpendicular diffusion in shaping the energetic ion spectrum in corotating interaction regions (CIRs), focusing on its mass-to-charge (A/Q) ratio dependence. We simulate a synthetic CIR using the EUropean Heliospheric FORecasting Information Asset and model the subsequent ion acceleration and transport by solving the focused transport equation incorporating both parallel and perpendicular diffusion. Our results reveal distinct differences in ion spectra between scenarios with and without perpendicular diffusion. In the absence of perpendicular diffusion, ion spectra near CIRs show a strong (A/Q)ϵdependence withϵdepending on the turbulence spectral index, agreeing with theoretical predictions. In contrast, the incorporation of perpendicular diffusion, characterized by a weakA/Qdependence, leads to similar spectra for different ion species. This qualitatively agrees with observations of energetic particles in CIRs.

     
    more » « less