skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse design of ultracompact multi-focal optical devices by diffractive neural networks
We propose an efficient inverse design approach for multifunctional optical elements based on adaptive deep diffractive neural networks (a-D2NNs). Specifically, we introduce a-D2NNs and design two-layer diffractive devices that can selectively focus incident radiation over two well-separated spectral bands at desired distances. We investigate focusing efficiencies at two wavelengths and achieve targeted spectral line shapes and spatial point-spread functions (PSFs) with optimal focusing efficiency. In particular, we demonstrate control of the spectral bandwidths at separate focal positions beyond the theoretical limit of single-lens devices with the same aperture size. Finally, we demonstrate devices that produce super-oscillatory focal spots at desired wavelengths. The proposed method is compatible with current diffractive optics and doublet metasurface technology for ultracompact multispectral imaging and lensless microscopy applications.  more » « less
Award ID(s):
2015700
PAR ID:
10368702
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
11
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 2842
Size(s):
Article No. 2842
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose the inverse design of ultracompact, broadband focusing spectrometers based on adaptive diffractive optical networks (a-DONs). Specifically, we introduce and characterize two-layer diffractive devices with engineered angular dispersion that focus and steer broadband incident radiation along predefined focal trajectories with the desired bandwidth and nanometer spectral resolution. Moreover, we systematically study the focusing efficiency of two-layer devices with side length L = 100 μ<#comment/> m and focal length f = 300 μ<#comment/> m across the visible spectrum and demonstrate accurate reconstruction of the emission spectrum from a commercial superluminescent diode. The proposed a-DONs design method extends the capabilities of efficient multi-focal diffractive optical devices to include single-shot focusing spectrometers with customized focal trajectories for applications to ultracompact spectroscopic imaging and lensless microscopy. 
    more » « less
  2. We design and characterize a novel axilens-based diffractive optics platform that flexibly combines efficient point focusing and grating selectivity and is compatible with scalable top-down fabrication based on a four-level phase mask configuration. This is achieved using phase-modulated compact axilens devices that simultaneously focus incident radiation of selected wavelengths at predefined locations with larger focal depths compared with traditional Fresnel lenses. In addition, the proposed devices are polarization-insensitive and maintain a large focusing efficiency over a broad spectral band. Specifically, here we discuss and characterize modulated axilens configurations designed for long-wavelength infrared (LWIR) in the 6 µm–12 µm wavelength range and in the 4 µm–6 µm midwavelength infrared (MWIR) range. These devices are ideally suited for monolithic integration atop the substrate layers of infrared focal plane arrays and for use as compact microspectrometers. We systematically study their focusing efficiency, spectral response, and cross-talk ratio; further, we demonstrate linear control of multiwavelength focusing on a single plane. Our design method leverages Rayleigh–Sommerfeld diffraction theory and is validated numerically using the finite element method. Finally, we demonstrate the application of spatially modulated axilenses to the realization of a compact, single-lens spectrometer. By optimizing our devices, we achieve a minimum distinguishable wavelength interval of Δ<#comment/> λ<#comment/> = 240 n m at λ<#comment/> c = 8 µ<#comment/> m and Δ<#comment/> λ<#comment/> = 165 n m at λ<#comment/> c = 5 µ<#comment/> m . The proposed devices add fundamental spectroscopic capabilities to compact imaging devices for a number of applications ranging from spectral sorting to LWIR and MWIR phase contrast imaging and detection. 
    more » « less
  3. Abstract This paper presents the design, fabrication, and characterization of dual‐band multi‐focal diffractive microlenses with sub‐wavelength thickness and the capability to simultaneously focus visible and near‐infrared spectral bands at two different focal positions. This technology utilizes high‐index and low‐loss sputtered hydrogenated amorphous Si, enabling a sub‐wavelength thickness of only 235 nm. Moreover, the proposed flat lens concept is polarization insensitive and can be readily designed to operate across any desired wavelength regime. Imaging under unpolarized broadband illumination with independent focal planes for two targeted spectral bands is experimentally demonstrated, enabling the encoding of the depth information of a sample into different spectral images. In addition, with a small footprint of only 100 µm and a minimum feature size of 400 nm, the proposed dual‐band multi‐focal diffractive microlenses can be readily integrated with vertical detector arrays to simultaneously concentrate and spectrally select electromagnetic radiation. This approach provides novel opportunities for spectroscopic and multispectral imaging systems with advanced detector architectures. 
    more » « less
  4. null (Ed.)
    Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D 2 NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D 2 2NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D 2 NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task. 
    more » « less
  5. We demonstrate focusing as well as imaging using diffractive microoptics, manufactured by two-photon polymerization grayscale lithography (2GL), that have been 3D printed into porous silicon oxide. While typical doublet lens systems require support structures that hold the lenses in place, our optics are held by the porous media itself, decreasing both the fabrication time and design constraints while increasing the optically active area. Compared to the typical two-photon polymerization fabrication process, 2GL offers better shape accuracy while simultaneously increasing throughput. To showcase 2GL manufactured optics in porous media, we fabricate singlet diffractive lenses with a diameter of 500 µm and numerical apertures of up to 0.6. We measure the intensity distribution in the focal plane, and along the optical axis. Furthermore, we design and fabricate a doublet lens system for imaging purposes with a diameter of 600 µm and thinner than 60 µm. We examine the imaging performance with a USAF 1951 resolution test chart and determine the resolution to be 287 lp/mm. 3D printing in porous SiO2thus holds great promise for future complex and unconventional microoptical solutions. 
    more » « less