skip to main content


Title: When the end modifies its means: the origins of novelty and the evolution of innovation
Abstract

The origin of novel complex traits constitutes a central yet largely unresolved challenge in evolutionary biology. Intriguingly, many of the most promising breakthroughs in understanding the genesis of evolutionary novelty in recent years have occurred not in evolutionary biology itself, but through the comparative study of development and, more recently, the interface of developmental biology and ecology. Here, I discuss how these insights are changing our understanding of what matters in the origin of novel, complex traits in ontogeny and evolution. Specifically, my essay has two major objectives. First, I discuss how the nature of developmental systems biases the production of phenotypic variation in the face of novel or stressful environments toward functional, integrated and, possibly, adaptive variants. This, in turn, allows the production of novel phenotypes to precede (rather than follow) changes in genotype and allows developmental processes that are the product of past evolution to shape evolutionary change that has yet to occur. Second, I explore how this nature of developmental systems has itself evolved over time, increasing the repertoire of ontogenies to pursue a wider range of objectives across an expanding range of conditions, thereby creating an increasingly extensive affordance landscape in development and developmental evolution. Developmental systems and their evolution can thus be viewed as dynamic processes that modify their own means across ontogeny and phylogeny. The study of these dynamics necessitates more than the strict reductionist approach that currently dominates the fields of developmental and evolutionary developmental biology.

 
more » « less
NSF-PAR ID:
10368722
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Volume:
139
Issue:
4
ISSN:
0024-4066
Page Range / eLocation ID:
p. 433-440
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form–function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution—evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution. 
    more » « less
  2. Abstract

    Scaling relationships emerge from differential growth of body parts relative to each other. As such, scaling relationships are at least in part the product of developmental plasticity. While some of the developmental genetic mechanisms underlying scaling relationships are starting to be elucidated, how these mechanisms evolve and give rise to the enormous diversity of allometric scaling observed in nature is less understood. Furthermore, developmental plasticity has itself been proposed as a mechanism that facilitates adaptation and diversification, yet its role in the developmental evolution of scaling relationships remains largely unknown. In this review, we first explore how the mechanisms of scaling relationships have evolved. We primarily focus on insect development and review how pathway components and pathway interactions have evolved across taxa to regulate scaling relationships across diverse traits. We then discuss the potential role of developmental plasticity in the evolution of scaling relationships. Specifically, we address the potential role of allometric plasticity and cryptic genetic variation in allometry in facilitating divergence via genetic accommodation. Collectively, in this article, we aim to bring together two aspects of developmental plasticity: the mechanistic underpinnings of scaling relationships and their evolution, and the potential role that plasticity plays in the evolutionary diversification of scaling relationships.

     
    more » « less
  3. Abstract Approaches to macroevolution require integration of its two fundamental components, within a hierarchical framework. Following a companion paper on the origin of variation, I here discuss sorting within an evolutionary hierarchy. Species sorting—sometimes termed species selection in the broad sense, meaning differential origination and extinction owing to intrinsic biological properties—can be split into strict-sense species selection, in which rate differentials are governed by emergent, species-level traits such as geographic range size, and effect macroevolution, in which rates are governed by organism-level traits such as body size; both processes can create hitchhiking effects, indirectly causing the proliferation or decline of other traits. Several methods can operationalize the concept of emergence, so that rigorous separation of these processes is increasingly feasible. A macroevolutionary tradeoff, underlain by the intrinsic traits that influence evolutionary dynamics, causes speciation and extinction rates to covary in many clades, resulting in evolutionary volatility of some clades and more subdued behavior of others; the few clades that break the tradeoff can achieve especially prolific diversification. In addition to intrinsic biological traits at multiple levels, extrinsic events can drive the waxing and waning of clades, and the interaction of traits and events are difficult but important to disentangle. Evolutionary trends can arise in many ways, and at any hierarchical level; descriptive models can be fitted to clade trajectories in phenotypic or functional spaces, but they may not be diagnostic regarding processes, and close attention must be paid to both leading and trailingedges of apparent trends. Biotic interactions can have negative or positive effects on taxonomic diversity within a clade, but cannot be readily extrapolated from the nature of such interactions at the organismic level. The relationships among macroevolutionary currencies through time (taxonomic richness, morphologic disparity, functional variety) are crucial for understanding the nature of evolutionary diversification. A novel approach to diversity-disparity analysis shows that taxonomic diversifications can lag behind, occur in concert with, or precede, increases in disparity. Some overarching issues relating to both the origin and sorting of clades and phenotypes include the macroevolutionary role of mass extinctions, the potential differences between plant and animal macroevolution, whether macroevolutionary processes have changed through geologic time, and the growing human impact on present-day macroevolution. Many challenges remain, but progress is being made on two of the key ones: (a) the integration of variation-generating mechanisms and the multilevel sorting processes that act on that variation, and (b) the integration of paleontological and neontological approaches to historical biology. 
    more » « less
  4. ABSTRACT

    Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi‐level convergent evolution’. To investigate multi‐level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long‐standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence. Evolutionary convergence does not necessarily extend across biological levels, as exemplified by cases of conservation and disparity in biological functions, organs, cells, and molecules associated with bioluminescence systems. Investigating differences across bioluminescent organisms will address fundamental questions on predictability and contingency in convergent evolution. Lastly, we highlight unexplored areas of bioluminescence research and advances in sequencing and chemical techniques useful for developing bioluminescence as a model system for studying multi‐level convergent evolution.

     
    more » « less
  5. Abstract Background

    A current argument in the CAM biology literature has focused on the nature of the CAM evolutionary trajectory: whether there is a smooth continuum of phenotypes between plants with C3 and CAM photosynthesis or whether there are discrete steps of phenotypic evolutionary change such as has been modelled for the evolution of C4 photosynthesis. A further implication is that a smooth continuum would increase the evolvability of CAM, whereas discrete changes would make the evolutionary transition from C3 to CAM more difficult.

    Scope

    In this essay, I attempt to reconcile these two viewpoints, because I think in many ways this is a false dichotomy that is constraining progress in understanding how both CAM and C4 evolved. In reality, the phenotypic space connecting C3 species and strong CAM/C4 species is both a continuum of variably expressed quantitative traits and yet also contains certain combinations of traits that we are able to identify as discrete, recognizable phenotypes. In this sense, the evolutionary mechanics of CAM origination are no different from those of C4 photosynthesis, nor from the evolution of any other complex trait assemblage.

    Conclusions

    To make progress, we must embrace the concept of discrete phenotypic phases of CAM evolution, because their delineation will force us to articulate what aspects of phenotypic variation we think are significant. There are some current phenotypic gaps that are limiting our ability to build a complete CAM evolutionary model: the first is how a rudimentary CAM biochemical cycle becomes established, and the second is how the ‘accessory’ CAM cycle in C3+CAM plants is recruited into a primary metabolism. The connections to the C3 phenotype we are looking for are potentially found in the behaviour of C3 plants when undergoing physiological stress – behaviour that, strangely enough, remains essentially unexplored in this context.

     
    more » « less