skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasmonically Enhanced CRISPR/Cas13a‐Based Bioassay for Amplification‐Free Detection of Cancer‐Associated RNA
Abstract Novel methods that enable sensitive, accurate and rapid detection of RNA would not only benefit fundamental biological studies but also serve as diagnostic tools for various pathological conditions, including bacterial and viral infections and cancer. Although highly sensitive, existing methods for RNA detection involve long turn‐around time and extensive capital equipment. Here, an ultrasensitive and amplification‐free RNA quantification method is demonstrated by integrating CRISPR‐Cas13a system with an ultrabright fluorescent nanolabel, plasmonic fluor. This plasmonically enhanced CRISPR‐powered assay exhibits nearly 1000‐fold lower limit‐of‐detection compared to conventional assay relying on enzymatic reporters. Using a xenograft tumor mouse model, it is demonstrated that this novel bioassay can be used for ultrasensitive and quantitative monitoring of cancer biomarker (lncRNA H19). The novel biodetection approach described here provides a rapid, ultrasensitive, and amplification‐free strategy that can be broadly employed for detection of various RNA biomarkers, even in resource‐limited settings.  more » « less
Award ID(s):
2027145 1900277
PAR ID:
10368742
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
10
Issue:
20
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Point-of-care COVID-19 assays that are more sensitive than the current RT-PCR (reverse transcription polymerase chain reaction) gold standard assay are needed to improve disease control efforts. We describe the development of a portable, ultrasensitive saliva-based COVID-19 assay with a 15-min sample-to-answer time that does not require RNA isolation or laboratory equipment. This assay uses CRISPR-Cas12a activity to enhance viral amplicon signal, which is stimulated by the laser diode of a smartphone-based fluorescence microscope device. This device robustly quantified viral load over a broad linear range (1 to 10 5 copies/μl) and exhibited a limit of detection (0.38 copies/μl) below that of the RT-PCR reference assay. CRISPR-read SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) RNA levels were similar in patient saliva and nasal swabs, and viral loads measured by RT-PCR and the smartphone-read CRISPR assay demonstrated good correlation, supporting the potential use of this portable assay for saliva-based point-of-care COVID-19 diagnosis. 
    more » « less
  2. Rapid and ultrasensitive point-of-care RNA detection plays a critical role in the diagnosis and management of various infectious diseases. The gold-standard detection method of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is ultrasensitive and accurate yet limited by the lengthy turnaround time (1-2 days). On the other hand, antigen test offers rapid at-home detection (15-20 min) but suffers from low sensitivity and high false-negative rates. An ideal point-of-care diagnostic device would combine the merits of PCR-level sensitivity and rapid sample-to-result workflow comparable to antigen testing. However, the existing RNA detection platform typically possesses superior sensitivity or rapid sample-to-result time, but not both. This paper reports a point-of-care microfluidic device that offers ultrasensitive yet rapid detection of viral RNA from clinical samples. The device consists of a microfluidic chip for precisely manipulating small volumes of samples, a miniaturized heater for viral lysis and ribonuclease (RNase) inactivation, a CRISPR Cas13a- electrochemical sensor for target preamplification-free and ultrasensitive RNA detection, and a smartphone-compatible potentiostat for data acquisition. As demonstrations, the devices achieve the detection of heat-inactivated SARS-CoV-2 samples with a limit of detection (LOD) down to 10 aM within 25 minutes, which is comparable to the sensitivity of RT-PCR and rapidness of antigen test. The platform also successfully distinguishes all nine positive unprocessed clinical SARS-CoV-2 nasopharyngeal swab samples from four negative samples within 25 minutes of sample-to-result time. Together, this device provides a point-of-care solution that can be deployed in diverse settings beyond laboratory environments for rapid and accurate detection of RNA from clinical samples. The device can potentially be expandable to detect other viral targets, such as human immunodeficiency virus (HIV) self-testing and Zika virus, where rapid and ultrasensitive point-of-care detection is required. 
    more » « less
  3. Access to safe and nutritious food is critical for maintaining life and supporting good health. Eating food that is contaminated with pathogens leads to serious diseases ranging from diarrhea to cancer. Many foodborne infections can cause long-term impairment or even death. Hence, early detection of foodborne pathogens such as pathogenicEscherichia colistrains is essential for public safety. Conventional methods for detecting these bacteria are based on culturing on selective media and following standard biochemical identification. Despite their accuracy, these methods are time-consuming. PCR-based detection of pathogens relies on sophisticated equipment and specialized technicians which are difficult to find in areas with limited resources. Whereas CRISPR technology is more specific and sensitive for identifying pathogenic bacteria because it employs programmable CRISPR-Cas systems that target particular DNA sequences, minimizing non-specific binding and cross-reactivity. In this project, a robust detection method based on CRISPR-Cas12a sensing was developed, which is rapid, sensitive and specific for detection of pathogenicE. coliisolates that were collected from the fecal samples from adult goats from 17 farms in Tennessee. Detection reaction contained amplified PCR products for the pathogenic regions, reporter probe, Cas12a enzyme, and crRNA specific to three pathogenic genes—stx1, stx2, and hlyA. The CRISPR reaction with the pathogenic bacteria emitted fluorescence when excited under UV light. To evaluate the detection sensitivity and specificity of this assay, its results were compared with PCR based detection assay. Both methods resulted in similar results for the same samples. This technique is very precise, highly sensitive, quick, cost effective, and easy to use, and can easily overcome the limitations of the present detection methods. This project can result in a versatile detection method that is easily adaptable for rapid response in the detection and surveillance of diseases that pose large-scale biosecurity threats to human health, and plant and animal production. 
    more » « less
  4. Since its first appearance in 1981, HIV-1 has remained a global concern. Current methods for diagnosing HIV-1, while effective, are mostly specific to a given subtype of HIV-1 and often require expensive equipment and highly trained individuals to collect and process the sample. It is necessary to develop a sensitive diagnostic method that can be administered with minimal equipment to provide better care in low-resource settings. Loop-mediated isothermal amplification is a rapid and sensitive method for detecting the presence of specific nucleic acid sequences. Herein we report the development and comparison of two different HIV LAMP assays, integrase and VPR, as well as the comparison between TRIZol and magnetic beads RNA extraction methods for each assay. Our analysis shows that the integrase assay was able to detect the virus from multiple subtypes in under 30 min with a variable limit of detection (LOD) that was dependent on the HIV-1 subtype. 
    more » « less
  5. Ribonuclease A (RNase A) plays significant roles in several physiological and pathological conditions and can be used as a valuable diagnostic biomarker for human diseases such as myocardial infarction and cancer. Hence, it is of great importance to develop a rapid and cost-effective method for the highly sensitive detection of RNase A. The significance of RNase A assay is further enhanced by the growing attention from the biotechnology and pharmaceutical industries to develop RNA-based vaccines and drugs in large part as a result of the successful development of mRNA vaccines in the COVID-19 pandemic. Herein, we report a label-free method for the detection of RNase A by monitoring its proteolytic cleavage of an RNA substrate in a nanopore. The method is ultra-sensitive with the limit of detection reaching as low as 30 femtogram per milliliter. Furthermore, sensor selectivity and the effects of temperature, incubation time, metal ion, salt concentration on sensor sensitivity were also investigated. 
    more » « less