skip to main content


Title: Massive central galaxies of galaxy groups in the Romulus simulations: an overview of galaxy properties at z  = 0
ABSTRACT

Contrary to many stereotypes about massive galaxies, observed brightest group galaxies (BGGs) are diverse in their star formation rates, kinematic properties, and morphologies. Studying how they evolve into and express such diverse characteristics is an important piece of the galaxy formation puzzle. We use a high-resolution cosmological suite of simulations Romulus and compare simulated central galaxies in group-scale haloes at z = 0 to observed BGGs. The comparison encompasses the stellar mass–halo mass relation, various kinematic properties and scaling relations, morphologies, and the star formation rates. Generally, we find that Romulus reproduces the full spectrum of diversity in the properties of the BGGs very well, albeit with a tendency toward lower than the observed fraction of quenched BGGs. We find both early-type S0 and elliptical galaxies as well as late-type disc galaxies; we find Romulus galaxies that are fast-rotators as well as slow-rotators; and we observe galaxies transforming from late-type to early-type following strong dynamical interactions with satellites. We also carry out case studies of selected Romulus galaxies to explore the link between their properties, and the recent evolution of the stellar system as well as the surrounding intragroup/circumgalactic medium. In general, mergers/strong interactions quench star-forming activity and disrupt the stellar disc structure. Sometimes, however, such interactions can also trigger star formation and galaxy rejuvenation. Black hole feedback can also lead to a decline of the star formation rate but by itself, it does not typically lead to complete quenching of the star formation activity in the BGGs.

 
more » « less
NSF-PAR ID:
10368928
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 22-47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The kinematic morphology–density relation of galaxies is normally attributed to a changing distribution of galaxy stellar masses with the local environment. However, earlier studies were largely focused on slow rotators; the dynamical properties of the overall population in relation to environment have received less attention. We use the SAMI Galaxy Survey to investigate the dynamical properties of ∼1800 early and late-type galaxies with log (M⋆/M⊙) > 9.5 as a function of mean environmental overdensity (Σ5) and their rank within a group or cluster. By classifying galaxies into fast and slow rotators, at fixed stellar mass above log (M⋆/M⊙) > 10.5, we detect a higher fraction (∼3.4σ) of slow rotators for group and cluster centrals and satellites as compared to isolated-central galaxies. We find similar results when using Σ5 as a tracer for environment. Focusing on the fast-rotator population, we also detect a significant correlation between galaxy kinematics and their stellar mass as well as the environment they are in. Specifically, by using inclination-corrected or intrinsic $\lambda _{R_{\rm {e}}}$ values, we find that, at fixed mass, satellite galaxies on average have the lowest $\lambda _{\, R_{\rm {e}},\rm {intr}}$, isolated-central galaxies have the highest $\lambda _{\, R_{\rm {e}},\rm {intr}}$, and group and cluster centrals lie in between. Similarly, galaxies in high-density environments have lower mean $\lambda _{\, R_{\rm {e}},\rm {intr}}$ values as compared to galaxies at low environmental density. However, at fixed Σ5, the mean $\lambda _{\, R_{\rm {e}},\rm {intr}}$ differences for low and high-mass galaxies are of similar magnitude as when varying Σ5 ($\Delta \lambda _{\, R_{\rm {e}},\rm {intr}} \sim 0.05$, with σrandom = 0.025, and σsyst < 0.03). Our results demonstrate that after stellar mass, environment plays a significant role in the creation of slow rotators, while for fast rotators we also detect an independent, albeit smaller, impact of mass and environment on their kinematic properties. 
    more » « less
  2. ABSTRACT

    Misalignments between the rotation axis of stars and gas are an indication of external processes shaping galaxies throughout their evolution. Using observations of 3068 galaxies from the SAMI Galaxy Survey, we compute global kinematic position angles for 1445 objects with reliable kinematics and identify 169 (12 per cent) galaxies which show stellar-gas misalignments. Kinematically decoupled features are more prevalent in early-type/passive galaxies compared to late-type/star-forming systems. Star formation is the main source of gas ionization in only 22 per cent of misaligned galaxies; 17 per cent are Seyfert objects, while 61 per cent show Low-Ionization Nuclear Emission-line Region features. We identify the most probable physical cause of the kinematic decoupling and find that, while accretion-driven cases are dominant, for up to 8 per cent of our sample, the misalignment may be tracing outflowing gas. When considering only misalignments driven by accretion, the acquired gas is feeding active star formation in only ∼1/4 of cases. As a population, misaligned galaxies have higher Sérsic indices and lower stellar spin and specific star formation rates than appropriately matched samples of aligned systems. These results suggest that both morphology and star formation/gas content are significantly correlated with the prevalence and timescales of misalignments. Specifically, torques on misaligned gas discs are smaller for more centrally concentrated galaxies, while the newly accreted gas feels lower viscous drag forces in more gas-poor objects. Marginal evidence of star formation not being correlated with misalignment likelihood for late-type galaxies suggests that such morphologies in the nearby Universe might be the result of preferentially aligned accretion at higher redshifts.

     
    more » « less
  3. ABSTRACT

    The processes responsible for the assembly of cold and warm gas in early-type galaxies (ETGs) are not well understood. We report on the multiwavelength properties of 15 non-central, nearby (z ≤ 0.008 89) ETGs primarily through Multi-Unit Spectroscopic Explorer (MUSE) and Chandra X-ray observations, to address the origin of their multiphase gas. The MUSE data reveal that 8/15 sources contain warm ionized gas traced by the H α emission line. The morphology of this gas is found to be filamentary in 3/8 sources: NGC 1266, NGC 4374, and NGC 4684, which is similar to that observed in many group and cluster-centred galaxies. All H α filamentary sources have X-ray luminosities exceeding the expected emission from the stellar population, suggesting the presence of diffuse hot gas, which likely cooled to form the cooler phases. The morphologies of the remaining 5/8 sources are rotating gas discs, not as commonly observed in higher mass systems. Chandra X-ray observations (when available) of the ETGs with rotating H α discs indicate that they are nearly void of hot gas. A mixture of stellar mass-loss and external accretion was likely the dominant channel for the cool gas in NGC 4526 and NGC 4710. These ETGs show full kinematic alignment between their stars and gas, and are fast rotators. The H α features within NGC 4191 (clumpy, potentially star-forming ring), NGC 4643, and NGC 5507 (extended structures) along with loosely overlapping stellar and gas populations allow us to attribute external accretion to be the primary formation channel of their cool gas.

     
    more » « less
  4. ABSTRACT

    We study the alignments of galaxy spin axes with respect to cosmic web filaments as a function of various properties of the galaxies and their constituent bulges and discs. We exploit the SAMI Galaxy Survey to identify 3D spin axes from spatially resolved stellar kinematics and to decompose the galaxy into the kinematic bulge and disc components. The GAMA survey is used to reconstruct the cosmic filaments. The mass of the bulge, defined as the product of stellar mass and bulge-to-total flux ratio Mbulge = M⋆ × (B/T), is the primary parameter of correlation with spin–filament alignments: galaxies with lower bulge masses tend to have their spins parallel to the closest filament, while galaxies with higher bulge masses are more perpendicularly aligned. M⋆ and B/T separately show correlations, but they do not fully unravel spin–filament alignments. Other galaxy properties, such as visual morphology, stellar age, star formation activity, kinematic parameters, and local environment, are secondary tracers. Focussing on S0 galaxies, we find preferentially perpendicular alignments, with the signal dominated by high-mass S0 galaxies. Studying bulge and disc spin–filament alignments separately reveals additional information about the formation pathways of the corresponding galaxies: bulges tend to have more perpendicular alignments, while discs show different tendencies according to their kinematic features and the mass of the associated bulge. The observed correlation between the flipping of spin–filament alignments and the growth of the bulge can be explained by mergers, which drive both alignment flips and bulge formation.

     
    more » « less
  5. ABSTRACT

    We utilize high-resolution cosmological simulations to reveal that high-redshift galaxies tend to undergo a robust ‘wet compaction’ event when near a ‘golden’ stellar mass of $\sim \!\!10^{10}\, \rm M_\odot$ . This is a gaseous shrinkage to a compact star-forming phase, a ‘blue nugget’ (BN), followed by central quenching of star formation to a compact passive stellar bulge, a ‘red nugget’ (RN), and a buildup of an extended gaseous disc and ring. Such nuggets are observed at cosmic noon and seed today’s early-type galaxies. The compaction is triggered by a drastic loss of angular momentum due to, e.g. wet mergers, counter-rotating cold streams, or violent disc instability. The BN phase marks drastic transitions in the galaxy structural, compositional, and kinematic properties. The transitions are from star forming to quenched inside-out, from diffuse to compact with an extended disc or ring and a stellar envelope, from dark matter to baryon central dominance, from prolate to oblate stellar shape, from pressure to rotation support, from low to high metallicity, and from supernova to AGN feedback. The central black hole growth, first suppressed by supernova feedback when below the golden mass, is boosted by the compaction, and the black hole keeps growing once the halo is massive enough to lock in the supernova ejecta.

     
    more » « less