skip to main content


Title: Seismicity in a weak crust: the transtensional tectonics of the Brawley Seismic Zone section of the Pacific–North America Plate Boundary in Southern California, USA
SUMMARY

The Brawley Seismic Zone (BSZ) is a ∼58-km-long section of the Pacific–North America Plate boundary that connects the southernmost San Andreas Fault (SAF) and the Imperial Fault in southern California. We analyse the BSZ as two segments: a north segment, dominated by SAF tectonics, and a south segment that accommodates a higher level of seismicity. The south segment includes a ∼6 km wide right lateral step-over that includes the Salton Sea geothermal field (SSGF) and Holocene subaerial lava domes at the south end of the Salton Sea, called Salton Buttes. In general, the 40 yr (1981–2021) of BSZ seismicity is characterized by transitory sequences that often are accommodated simultaneously or in quick succession on intricate ladder-like faults. These sequences rarely reactivate faults associated with previous seismicity alignments but rather activate adjacent faults, sometimes located within less than 1 km. They can include several events of similar size as the mainshock, followed by bursts of aftershocks sometimes located away from the mainshock rupture. The seismicity rate and the spatial geometrical complexity varies between the BSZ-north and BSZ-south segments. The 24-km-long BSZ-north accommodates a ∼12-km-long linear trend of seismicity that extends from the SAF terminus into the Salton Sea, where moderate-sized northeast striking sequences form the rungs in a ladder-structure in a weak crust. The seismicity in this area is most likely influenced by the stress state of the SAF. In contrast, the 34 km long BSZ-south segment, which also has a weak crust, has accommodated larger sequences that illuminate irregular ladder-type faulting, with aftershocks defining linear distributions striking either north or northeast. The focal mechanisms exhibit a mostly strike-slip style of faulting with minor dip-slip faulting in the south Salton Sea area as well as the Mesquite basin to the south. The state of stress, as determined from focal mechanisms, consists of almost horizontal σ1, and σ3 with vertical σ2. The activation angle between the trend of σ1 and the preferred nodal plane of the largest nearby event decreases systematically from north to south along the long-axis of the BSZ. In the step-over zone, the Holocene volcanism and the frequent seismicity sequences suggest crustal extension as well as associated reduced crustal strength as compared to other parts of the BSZ. The presence of weak, thin, hot crust and distributed ladder-like or conjugate predominantly strike-slip faulting suggests that the whole BSZ acts as a several kilometre wide fault zone where no prominent principal slip surfaces are required to accommodate moderate-sized (M6+) earthquakes.

 
more » « less
NSF-PAR ID:
10368947
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
231
Issue:
1
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 717-735
Size(s):
["p. 717-735"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, and by a system of distributed transform faults and rifts including the rapidly extending Gulf of Corinth in central Greece and the active grabens of western Turkey. Africa–Eurasia convergence along the Hellenic Arc occurs at a median rate of 49.8 mm yr–1 in a largely trench-normal direction except near eastern Crete where variably oriented slip on the megathrust coincides with mixed-mode and strike-slip deformation in the overlying accretionary wedge near the Ptolemy–Pliny–Strabo trenches. Our kinematic model illustrates the competing roles the North Anatolian mantle shear zone, Hellenic Trench, overlying mantle wedge, and active crustal faults play in accommodating tectonic indentation, slab rollback and associated Aegean extension. Viscoelastic flow in the lower crust and upper mantle dominate the surface velocity field across much of Anatolia and a clear transition to megathrust-related slab pull occurs in western Turkey, the Aegean Sea and Greece. Crustal scale faults and the Hellenic wedge contribute only a minor amount to the large-scale, regional pattern of Eastern Mediterranean interseismic surface deformation. 
    more » « less
  2. On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems. 
    more » « less
  3. Cooling ages of tectonic blocks between the Yakutat microplate and the Fairweather transform boundary fault reveal exhumation due to strike-slip faulting and subsequent collision into this tectonic corner. The Yakutat and Boundary faults are splay faults that define tectonic panels with bounding faults that have evidence of both reverse and strike-slip motion, and they are parallel to the northern end of the Fairweather fault. Uplift and exhumation simultaneous with strike-slip motion have been significant since the late Miocene. The blocks are part of an actively deforming tectonic corner, as indicated by the ~14–1.5 m of coseismic uplift from the M 8.1 Yakutat Bay earthquake of 1899 and 4 m of strike-slip motion in the M 7.9 Lituya Bay earthquake in 1958 along the Fairweather fault. New apatite (U-Th-Sm)/He (AHe) and zircon (U-Th)/He (ZHe) data reveal that the Boundary block and the Russell Fiord block have different cooling histories since the Miocene, and thus the Boundary fault that separates them is an important tectonic boundary. Upper Cretaceous to Paleocene flysch of the Russell Fiord block experienced a thermal event at 50 Ma, then a relatively long period of burial until the late Miocene when initial exhumation resulted in ZHe ages between 7 and 3 Ma, and then very rapid exhumation in the last 1–1.5 m.y. Exhumation of the Russell Fiord block was accommodated by reverse faulting along the Yakutat fault and the newly proposed Calahonda fault, which is parallel to the Yakutat fault. The Eocene schist of Nunatak Fiord and 54–53 Ma Mount Stamy and Mount Draper granites in the Boundary block have AHe and ZHe cooling ages that indicate distinct and very rapid cooling between ca. 5 Ma and ca. 2 Ma. Rocks of the Chugach Metamorphic Complex to the northeast of the Fairweather fault and in the fault zone were brought up from 10–12 km at extremely high rates (>5 km/m.y.) since ca. 3 Ma, which implies a significant component of dip-slip motion along the Fairweather fault. The adjacent rocks of the Boundary block were exhumed with similar rates and from similar depths during the early Pliocene, when they may have been located 220–250 km farther south near Baranof Island. The profound and significant exhumation of the three tectonic blocks in the last 5 m.y. has probably been driven by uplift and erosional exhumation due to contraction as rocks collide into this tectonic corner. The documented spatial and temporal pattern of exhumation is in agreement with the southward shift of focused exhumation at the St. Elias syntaxial corner and the southeast propagation of the fold-and thrust belt. 
    more » « less
  4. ABSTRACT The largest earthquake since 1954 to strike the state of Nevada, United States, ruptured on 15 May 2020 along the Monte Cristo range of west-central Nevada. The Mw 6.5 event involved predominantly left-lateral strike-slip faulting with minor normal components on three aligned east–west-trending faults that vary in strike by 23°. The kinematic rupture process is determined by joint inversion of Global Navigation Satellite Systems displacements, Interferometric Synthetic Aperture Radar (InSAR) data, regional strong motions, and teleseismic P and SH waves, with the three-fault geometry being constrained by InSAR surface deformation observations, surface ruptures, and relocated aftershock distributions. The average rupture velocity is 1.5  km/s, with a peak slip of ∼1.6  m and a ∼20  s rupture duration. The seismic moment is 6.9×1018  N·m. Complex surface deformation is observed near the fault junction, with a deep near-vertical fault and a southeast-dipping fault at shallow depth on the western segment, along which normal-faulting aftershocks are observed. There is a shallow slip deficit in the Nevada ruptures, probably due to the immature fault system. The causative faults had not been previously identified and are located near the transition from the Walker Lane belt to the Basin and Range province. The east–west geometry of the system is consistent with the eastward extension of the Mina Deflection of the Walker Lane north of the White Mountains. 
    more » « less
  5. Abstract

    Integrated observations from the 2017 Mw 8.2 Tehuantepec, Mexico, earthquake probe one of the largest normal‐faulting events inside a subducting slab. In this study, we utilize a template matching approach to detect possible missing earthquakes within a 2‐month period before the mainshock. The seismicity rate shows an abrupt increase in the last day around the mainshock hypocenter. The large distance between most of the foreshocks and the mainshock is not consistent with static stress triggering but suggests alternative mechanisms such as delayed dynamic triggering or aseismic transients. Back‐projection using the USArray network reveals that the rupture propagated northwestward unilaterally at a speed of 3.6 km/s and terminated north of the Tehuantepec Ridge. Towards the end of the rupture, a wide step‐over occurred onto an adjacent fault parallel to the main fault plane. The mainshock is likely a reactivation of subducted outer‐rise faults, supported by the similarity of fault‐strike angles. The surprisingly large magnitude is consistent with exceedingly large dimensions of outer‐rise faulting in this segment of the central Mexican trench.

     
    more » « less