skip to main content


Title: Framing an Ecological Perspective on Teacher Professional Development

From a teacher’s perspective, teacher learning happens through a complex web of learning experiences. However, research on teacher professional development (PD) typically focuses on the direct influence of single activities or programs. PD researchers less often acknowledge the interactive impacts on teacher learning of the multiple experiences teachers have in different contexts. This conceptual paper works toward a more thoroughgoing ecological framing of teacher PD by bringing forth three dimensions of teacher learning that are often overlooked: scope, interconnectedness, and temporality. The essay centers on the type of design that is widely considered high-quality PD—namely, experiences that are collaborative and situated in teachers’ instructional context—and considers those experiences from the perspective of these three dimensions. I illustrate this framework and its affordances with data from a 4-year research project rooted in video-based mathematics teacher conversations. The focus on scope allows researchers to name and distinguish contexts that are salient to their different studies. The focus on interconnectedness uncovers the interactive relationship between the immediate and broader PD contexts. Finally, the focus on temporality affords the understanding of different phases in learning and extends linear conceptions of progress. Together, these dimensions provide a rich conceptualization to better inform the work of teacher educators.

 
more » « less
NSF-PAR ID:
10368949
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.3102
Date Published:
Journal Name:
Educational Researcher
Volume:
51
Issue:
7
ISSN:
0013-189X
Page Range / eLocation ID:
p. 489-495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research Experiences for Teachers (RET) as teacher professional development strive to increase teachers’ identity as science educators through authentic experiences in scientific research teams (EEC-1711543). MRET is a NSF-funded RET in its third year of embedding K-5 teachers in engineering laboratory research teams. Historically, most RET sites focus on secondary (6-12) teachers as participants, leveraging their content knowledge as they must have significant college level coursework and often a degree in the subject taught. Elementary teacher preparation has a broader scope; primary teachers require basic proficiency in all subject areas, creating a unique challenge for MRET in finding common ground among participating researchers and teachers. This paper presents our process of developing and employing badges to ensure the time elementary teachers and university scientists spend together in the laboratory is productive in both accomplishing the work of the lab and in contributing to the desired professional growth outcomes for the teachers. A key component in finding this balance has been the construction of a micro-certification framework based upon the Next Generation Science Standards (NGSS) science and engineering practices, and specific skills and proficiencies teachers are expected to demonstrate as laboratory researchers. This framework has been translated into MRET badges, loosely based on the structures of Boy Scout badges and digital micro certifications, that teachers may earn through a process of learning about a topic or skill, practicing it, then demonstrating their learning to a member of the MRET team. MRET badges have been enthusiastically received by both teachers and scientists as a valuable form of scaffolding of the research experience and as an aid to direct teacher activities within the lab in circumstances where they may otherwise have unstructured time. Because badges are tied to the NGSS science and engineering practices, they serve as a bridge uniting the work of the research labs and teacher’s elementary curriculum. 
    more » « less
  2. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  3. Designing a Curriculum to Broaden Middle School Students’ Ideas and Interest in Engineering As the 21st century progresses, engineers will play critical roles in addressing complex societal problems such as climate change and nutrient pollution. Research has shown that more diverse teams lead to more creative and effective solutions (Smith-Doerr et al., 2017). However, while some progress has been made in increasing the number of women and people of color, 83% of employed engineers are male and 68% of engineers are white (NSF & NCSES, 2019). Traditional K–12 approaches to engineering often emphasize construction using a trial-and-error approach (ASEE, 2020). Although this approach may appeal to some students, it may alienate other students who then view engineering simply as “building things.” Designing engineering experiences that broaden students’ ideas about engineering, may help diversify the students entering the engineering pipeline. To this end, we developed Solving Community Problems with Engineering (SCoPE), an engineering curriculum that engages seventh-grade students in a three-week capstone project focusing on nutrient pollution in their local watershed. SCoPE engages students with the problem through local news articles about nutrient pollution and images of algae covered lakes, which then drives the investigation into the detrimental processes caused by excess nutrients entering bodies of water from sources such as fertilizer and wastewater. Students research the sources of nutrient pollution and potential solutions, and use simulations to investigate key variables and optimize the types of strategies for effectively decreasing and managing nutrient pollution to help develop their plans. Throughout the development process, we worked with a middle school STEM teacher to ensure the unit builds upon the science curriculum and the activities would be engaging and meaningful to students. The problem and location were chosen to illustrate that engineers can solve problems relevant to rural communities. Since people in rural locations tend to remain very connected to their communities throughout their lives, it is important to illustrate that engineering could be a relevant and viable career near home. The SCoPE curriculum was piloted with two teachers and 147 seventh grade students in a rural public school. Surveys and student drawings of engineers before and after implementation of the curriculum were used to characterize changes in students’ interest and beliefs about engineering. After completing the SCoPE curriculum, students’ ideas about engineers’ activities and the types of problems they solve were broadened. Students were 53% more likely to believe that engineers can protect the environment and 23% more likely to believe that they can identify problems in the community to solve (p < 0.001). When asked to draw an engineer, students were 1.3 times more likely to include nature/environment/agriculture (p < 0.01) and 3 times more likely to show engineers helping people in the community (p< 0.05) Additionally, while boys’ interest in science and engineering did not significantly change, girls’ interest in engineering and confidence in becoming an engineer significantly increased (Cohen’s D = 0.28, p<0.05). The SCoPE curriculum is available on PBS LearningMedia: https://www.pbslearningmedia.org/collection/solving-community-problems-with-engineering/ This project was funded by NSF through the Division of Engineering Education and Centers, Research in the Formation of Engineers program #202076. References American Society for Engineering Education. (2020). Framework for P-12 Engineering Learning. Washington, DC. DOI: 10.18260/1-100-1153 National Science Foundation, National Center for Science and Engineering Statistics. (2019). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 17-310. Arlington, VA. https://ncses.nsf.gov/pubs/nsf21321/. Smith-Doerr, L., Alegria, S., & Sacco, T. (2017). How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts, Engaging Science, Technology, and Society 3, 139-153. 
    more » « less
  4. null (Ed.)
    In recent years, studies in engineering education have begun to intentionally integrate disability into discussions of diversity, inclusion, and equity. To broaden and advocate for the participation of this group in engineering, researchers have identified a variety of factors that have kept people with disabilities at the margins of the field. Such factors include the underrepresentation of disabled individuals within research and industry; systemic and personal barriers, and sociocultural expectations within and beyond engineering education-related contexts. These findings provide a foundational understanding of the external and environmental influences that can shape how students with disabilities experience higher education, develop a sense of belonging, and ultimately form professional identities as engineers. Prior work examining the intersections of disability identity and professional identity is limited, with little to no studies examining the ways in which students conceptualize, define, and interpret disability as a category of identity during their undergraduate engineering experience. This lack of research poses problems for recruitment, retention, and inclusion, particularly as existing studies have shown that the ways in which students perceive and define themselves in relation to their college major is crucial for the development of a professional engineering identity. Further, due to variation in defining ‘disability’ across national agencies (e.g., the National Institutes of Health, and the Department of Justice) and disability communities (with different models of disability), the term “disability” is broad and often misunderstood, frequently referring to a group of individuals with a wide range of conditions and experiences. Therefore, the purpose of this study is to gain deeper insights into the ways students define disability and disability identity within their own contexts as they develop professional identities. Specifically, we ask the following research question: How do students describe and conceptualize non-apparent disabilities? To answer this research question, we draw from emergent findings from an on-going grounded theory exploration of professional identity formation of undergraduate civil engineering students with disabilities. In this paper, we focus our discussion on the grounded theory analyses of 4 semi-structured interviews with participants who have disclosed a non-apparent disability. Study participants consist of students currently enrolled in undergraduate civil engineering programs, students who were initially enrolled in undergraduate civil engineering programs and transferred to another major, and students who have recently graduated from a civil engineering program within the past year. Sensitizing concepts emerged as findings from the initial grounded theory analysis to guide and initiate our inquiry: 1) the medical model of disability, 2) the social model of disability, and 3) personal experience. First, medical models of disability position physical, cognitive, and developmental difference as a “sickness” or “condition” that must be “treated”. From this perspective, disability is perceived as an impairment that must be accommodated so that individuals can obtain a dominantly-accepted sense of normality. An example of medical models within the education context include accommodations procedures in which students must obtain an official diagnosis in order to access tools necessary for academic success. Second, social models of disability position disability as a dynamic and fluid identity that consists of a variety of physical, cognitive, or developmental differences. Dissenting from assumptions of normality and the focus on individual bodily conditions (hallmarks of the medical model), the social model focuses on the political and social structures that inherently create or construct disability. An example of a social model within the education context includes the universal design of materials and tools that are accessible to all students within a given course. In these instances, students are not required to request accommodations and may, consequently, bypass medical diagnoses. Lastly, participants referred to their own life experiences as a way to define, describe, and consider disability. Fernando considers his stutter to be a disability because he is often interrupted, spoken over, or silenced when engaging with others. In turn, he is perceived as unintelligent and unfit to be a civil engineer by his peers. In contrast, David, who identifies as autistic, does not consider himself to be disabled. These experiences highlight the complex intersections of medical and social models of disability and their contextual influences as participants navigate their lives. While these sensitizing concepts are not meant to scope the research, they provide a useful lens for initiating research and provides markers on which a deeper, emergent analysis is expanded. Findings from this work will be used to further explore the professional identity formation of undergraduate civil engineering students with disabilities. These findings will provide engineering education researchers and practitioners with insights regarding the ways individuals with disabilities interpret their in- and out-of-classroom experiences and navigate their disability identities. For higher education, broadly, this work aims to reinforce the complex and diverse nature of disability experience and identity, particularly as it relates to accommodations and accessibility within the classroom, and expand the inclusiveness of our programs and institutions. 
    more » « less
  5. Objective Over the past decade, we developed and studied a face-to-face video-based analysis-of-practice professional development (PD) model. In a cluster randomized trial, we found that the face-to-face model enhanced elementary science teacher knowledge and practice and resulted in important improvements to student science achievement (student treatment effect, d = 0.52; Taylor et al, 2017; Roth et al, 2018). The face-to-face PD model is expensive and difficult to scale. In this paper, we present the results of a two-year design-based research study to translate the face-to-face PD into a facilitated online PD experience. The purpose is to create an effective, flexible, and cost-efficient PD model that will reach a broader audience of teachers. Perspective/Theoretical Framework The face-to-face PD model is grounded in situated cognition and cognitive apprenticeship frameworks. Teachers engage in learning science content and effective science teaching practices in the context in which they will be teaching. There are scaffolded opportunities for teachers to learn from analysis of model videos by experienced teachers, to try teaching model units, to analyze video of their own teaching efforts, and ultimately to develop their own unit, with guidance. The PD model attends to the key features of effective PD as described by Desimone (2009) and others. We adhered closely to the design principles of the face-to-face model as described by Authors, 2019. Methods We followed a design-based research approach (DBR; Cobb et al., 2003; Shavelson et al., 2003) to examine the online program components and how they promoted or interfered with the development of teachers’ knowledge and reflective practice. Of central interest was the examination of mechanisms for facilitating teacher learning (Confrey, 2006). To accomplish this goal, design researchers engaged in iterative cycles of problem analysis, design, implementation, examination, and redesign (Wang & Hannafin, 2005) in phase one of the project before studying its effect. Data Three small pilot groups of teachers engaged in both synchronous and asynchronous components of the larger online course which began implementation with a 10-week summer course that leads into study groups of participants meeting through one academic year. We iteratively designed, tested, and revised 17 modules across three pilot versions. On average, pilot groups completed one module every two weeks. Pilot 1 began the work in May 2019; Pilot 2 began in August 2019, and Pilot 3 began in October 2019. Pilot teachers responded to surveys and took part in interviews related to the PD. The PD facilitators took extensive notes after each iteration. The development team met weekly to discuss revisions. We revised all modules between each pilot group and used what we learned to inform our development of later modules within each pilot. For example, we applied what we learned from testing Module 3 with Pilot 1 to the development of Module 3 for Pilots 2, and also applied what we learned from Module 3 with Pilot 1 to the development of Module 7 for Pilot 1. Results We found that community building required the same incremental trust-building activities that occur in face-to-face PD. Teachers began with low-risk activities and gradually engaged in activities that required greater vulnerability (sharing a video of themselves teaching a model unit for analysis and critique by the group). We also identified how to contextualize technical tools with instructional prompts to allow teachers to productively interact with one another about science ideas asynchronously. As part of that effort, we crafted crux questions to surface teachers’ confusions or challenges related to content or pedagogy. We called them crux questions because they revealed teachers’ uncertainty and deepened learning during the discussion. Facilitators leveraged asynchronous responses to crux questions in the synchronous sessions to push teacher thinking further than would have otherwise been possible in a 2-hour synchronous video-conference. Significance Supporting teachers with effective, flexible, and cost-efficient PD is difficult under the best of circumstances. In the era of covid-19, online PD has taken on new urgency. NARST members will gain insight into the translation of an effective face-to-face PD model to an online environment. 
    more » « less