skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: High-speed two-dimensional terahertz spectroscopy with echelon-based shot-to-shot balanced detection

By using a reflective-echelon-based electro-optic sampling technique and a fast detector, we develop a two-dimensional terahertz (THz) spectrometer capable of shot-to-shot balanced readout of THz waveforms at a full 1-kHz repetition rate. To demonstrate the capabilities of this new detection scheme for high-throughput applications, we use gas-phase acetonitrile as a model system to acquire two-dimensional THz rotational spectra. The results show a two-order-of-magnitude speedup in the acquisition of multidimensional THz spectra when compared to conventional delay-scan methods while maintaining accurate retrieval of the nonlinear THz signal. Our report presents a feasible solution for bringing the technique of multidimensional THz spectroscopy into widespread practice.

 
more » « less
PAR ID:
10368958
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
14
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 3479
Size(s):
Article No. 3479
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a single-shot detection method of terahertz correlated second harmonic generation in plasma-based sources by directly mixing an optical probe into femtosecond laser-induced plasma filaments in air. The single-shot second harmonic trace is obtained by measuring a second harmonic generation on a conventional CCD with a spatiotemporally distorted probe beam. The system shows a spectrometer resolution of 22 fs/pixel on the CCD and a true resolution on the order of the probe pulse duration. With considerable THz peak electric field strength, this formalism can open the door to single-shot THz detection without bandwidth limitations.

     
    more » « less
  2. We present a methodology for simulating multidimensional electronic spectra of molecular aggregates with coupling of electronic excitation to a structured environment using the stochastic non-Markovian quantum state diffusion (NMQSD) method in combination with perturbation theory for the response functions. A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise. We demonstrate that our approach shows fast convergence with respect to the number of stochastic trajectories, providing a promising technique for numerical calculation of two-dimensional electronic spectra of large molecular aggregates.

     
    more » « less
  3. We observe the ultrafast dynamics of solids and gases under intense femtosecond light in a single shot using Frequency Domain Holography (FDH) [1-3]. FDH is a time-resolved visualization technique that utilizes a pump pulse and two chirped laser pulses (reference and probe) for ultrafast phase measurements. Single-shot visualization of laser-matter interactions will allow for increased understanding of nonlinear optical phenomena such as Raman-induced extreme spectral broadening [4], filamentation [5], and plasma generation and recombination [3]. [1] S. P. Le Blanc et al., Opt. Lett. 56, 764-766 (2000). [2] K. Y. Kim et al., APL, 88 4124-4126 (2002). [3] D. Dempsey et al. Opt. Lett. 45, 1252-1255 (2020) [4] J. Beetar et al., Science Advances 6, eabb5375 (2020) [5] A. Couairon et al., Phys. Rep. 441, 47 (2007). 
    more » « less
  4. We demonstrate a novel single-shot method to determine the detonation energy of laser-induced plasma and investigate its performance. This approach can be used in cases where there are significant shot-to-shot variations in ablation conditions, such as laser fluctuations, target inhomogeneity, or multiple filamentation with ultrashort pulses. The Sedov blast model is used to fit two time-delayed shadowgrams measured with a double-pulse laser. We find that the reconstruction of detonation parameters is insensitive to the choice of interpulse delay in double-pulse shadowgraphy. In contrast, the initial assumption of expansion dimensionality has a large impact on the reconstructed detonation energy. The method allows for a reduction in the uncertainties of blast wave energy measurements as a diagnostic technique employed in various laser ablation applications.

     
    more » « less
  5. Abstract

    Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range. In this paper, we overview the synthesis of 2D materials and the prominent THz spectroscopy techniques: THz time-domain spectroscopy (THz-TDS), optical pump THz probe (OPTP) technique, and optical pump--probe (OPP) THz spectroscopy. Through a coalescence of experimental findings, numerical simulation, and theoretical analysis, we present the current understanding of the rich ultrafast physics of technologically significant 2D materials: graphene, transition metal dichalcogenides, MXenes, perovskites, topological 2D materials, and 2D heterostructures. Finally, we offer a perspective on the role of THz characterization in guiding future research and in the quest for ideal 2D materials for new applications.

     
    more » « less