The abundance of cold molecular gas plays a crucial role in models of galaxy evolution. While deep spectroscopic surveys of CO emission lines have been a primary tool for measuring this abundance, the difficulty of these observations has motivated alternative approaches to studying molecular gas content. One technique, line intensity mapping, seeks to constrain the average molecular gas properties of large samples of individually undetectable galaxies through the CO brightness power spectrum. Here we present constraints on the cross-power spectrum between CO intensity maps and optical galaxy catalogs. This cross-measurement allows us to check for systematic problems in CO intensity mapping data, and validate the data analysis used for the auto-power spectrum measurement of the CO Power Spectrum Survey. We place a 2
We present the statistical redshift distribution of a large sample of low-surface-brightness (LSB) galaxies identified in the first 200 deg2of the Hyper Suprime-Cam Strategic Survey Program. Through cross-correlation with the NASA–SDSS Atlas, we find that the majority of objects lie within
- Publication Date:
- NSF-PAR ID:
- 10368996
- Journal Name:
- The Astrophysical Journal
- Volume:
- 933
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 150
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ upper limit on the band-averaged CO-galaxy cross-power ofP ×< 540μ K h−3Mpc3. Our measurement favors a nonzero 〈T CO〉 at around 90% confidence and gives an upper limit on the mean molecular gas density atz ∼ 2.6 of 7.7 × 108M ⊙Mpc−3. We forecast the expected cross-power spectrum by applying a number of literature prescriptions for the CO luminosity–halo mass relation to a suite of mock light cones. Under the most optimistic forecasts, the cross-spectrum could be detected with only moderate extensionsmore » -
ABSTRACT Galaxy sizes correlate closely with the sizes of their parent dark matter haloes, suggesting a link between halo formation and galaxy growth. However, the precise nature of this relation and its scatter remains to be understood fully, especially for low-mass galaxies. We analyse the galaxy–halo size relation (GHSR) for low-mass ($M_\star \sim 10^{7-9}\, {\rm M}_\odot$) central galaxies over the past 12.5 billion years with the help of cosmological volume simulations (FIREbox) from the Feedback in Realistic Environments (FIRE) project. We find a nearly linear relationship between the half-stellar mass galaxy size R1/2 and the parent dark matter halo virial radius Rvir. This relation evolves only weakly since redshift z = 5: $R_{1/2}\, [{\rm kpc}] = (0.053\pm 0.002)(R_{\rm vir}/35\, {\rm kpc})^{0.934\pm 0.054}$, with a nearly constant scatter $\langle \sigma \rangle = 0.084\, [{\rm dex}]$. While this ratio is similar to what is expected from models where galaxy disc sizes are set by halo angular momentum, the low-mass galaxies in our sample are not angular momentum supported, with stellar rotational to circular velocity ratios vrot/vcirc ∼ 0.15. Introducing redshift as another parameter to the GHSR does not decrease the scatter. Furthermore, this scatter does not correlate with any of the halo propertiesmore »
-
ABSTRACT The first deep-field observations of the JWST have immediately yielded a surprisingly large number of very high redshift candidates, pushing the frontier of observability well beyond z ≳ 10. We here present a detailed SED-fitting analysis of the 10 gravitationally lensed z ∼ 9–16 galaxy candidates detected behind the galaxy cluster SMACS J0723.3−7327 in a previous paper using the BEAGLE tool. Our analysis makes use of dynamical considerations to place limits on the ages of these galaxies and of all three published SL models of the cluster to account for lensing systematics. We find the majority of these galaxies to have relatively low stellar masses $M_{\star }\sim 10^7-10^8\, \mathrm{M}_{\odot }$ and young ages tage ∼ 10–100 Myr but with a few higher mass exceptions ($M_{\star }\sim 10^9\rm{-}10^{10}\, \mathrm{M}_{\odot }$) due to Balmer-break detections at z ∼ 9–10. Because of their very blue UV-slopes, down to β ∼ −3, all of the galaxies in our sample have extremely low dust attenuations AV ≲ 0.02. Placing the measured parameters into relation, we find a very shallow M⋆ − MUV-slope and high sSFRs above the main sequence of star formation with no significant redshift-evolution in either relation. This is in agreement with the brightmore »
-
Abstract We investigate the relationship between dust attenuation and stellar mass (
M *) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz ∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz ∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hα and Hβ emission lines, and photometric measurements of the rest-UV stellar continuum. The Hα /Hβ ratio is used to determine the magnitude of attenuation at the wavelength of Hα ,A Hα . Rest-UV colors and spectral energy distribution fitting are used to estimateA 1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM *over the redshift rangez ∼ 0 toz ∼ 2.3. Folding in the latest estimates of the evolution ofM dust, (M dust/M gas), and gas surface density at fixedM *, we find that the expectedM dustand dust mass surface density are both significantly higher atz ∼ 2.3 than atz ∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancymore » -
Abstract Using spatially resolved H
α emission line maps of star-forming galaxies, we study the spatial distribution of star formation over a wide range in redshift (0.5 ≲z ≲ 1.7). Ourz ∼ 0.5 measurements come from deep Hubble Space Telescope (HST) Wide Field Camera 3 G102 grism spectroscopy obtained as part of the CANDELS Lyα Emission at Reionization Experiment. For star-forming galaxies with log(M */M ⊙) ≥ 8.96, the mean Hα effective radius is 1.2 ± 0.1 times larger than that of the stellar continuum, implying inside-out growth via star formation. This measurement agrees within 1σ with those measured atz ∼ 1 andz ∼ 1.7 from the 3D-HST and KMOS3Dsurveys, respectively, implying no redshift evolution. However, we observe redshift evolution in the stellar mass surface density within 1 kpc (Σ1kpc). Star-forming galaxies atz ∼ 0.5 with a stellar mass of log(M */M ⊙) = 9.5 have a ratio of Σ1kpcin Hα relative to their stellar continuum that is lower by (19 ± 2)% compared toz ∼ 1 galaxies. Σ1kpc,Hα /Σ1kpc,Contdecreases toward higher stellar masses. The majority of the redshift evolution in Σ1kpc,Hα /Σ1kpc,Contversus stellar mass stems from the fact that log(Σ1kpc,Hα ) declines twice as much as log(Σ1kpc,Cont) fromz ∼ 1 to 0.5 (at a fixed stellar mass of log(M */M ⊙) = 9.5). By comparing our results to the TNG50 cosmologicalmore »