Magnonic holographic memory is a type of memory that uses spin waves for magnetic bit read-in and read-out. Its operation is based on the interaction between magnets and propagating spin waves where the phase and the amplitude of the spin wave are sensitive to the magnetic field produced by the magnet. Memory states 0 and 1 are associated with the presence/absence of the magnet in a specific location. In this work, we present experimental data showing the feasibility of magnetic bit location using spin waves. The testbed consists of four micro-antennas covered by Y3Fe2(FeO4)3 yttrium iron garnet (YIG) film. A constant in-plane bias magnetic field is provided by NdFeB permanent magnet. The magnetic bit is made of strips of magnetic steel to maximize interaction with propagating spin waves. In the first set of experiments, the position of the bit was concluded by the change produced in the transmittance between two antennas. The minima appear at different frequencies and show different depths for different positions of the bit. In the second set of experiments, two input spin waves were generated, where the phase difference between the waves is controlled by the phase shifter. The minima in the transmitted spectra appear at different phases for different positions of magnetic bit. The utilization of the structured bit enhances its interaction with propagating spin waves and improves recognition fidelity compared to a regular-shaped bit. The recognition accuracy is further improved by exploiting spin wave interference. The depth of the transmission minima corresponding to different magnet positions may exceed 30 dB. All experiments are accomplished at room temperature. Overall, the presented data demonstrate the practical feasibility of using spin waves for magnetic bit red-out. The practical challenges are also discussed.
more »
« less
Micro magnet location using spin waves
In this work, we present experimental data demonstrating the feasibility of magnetic object location using spin waves. The test structure includes a Y3Fe2(FeO4)3film with four micro-antennas placed on the edges. A constant in-plane bias magnetic field is provided by the NdFeB permanent magnet. Two antennas are used for spin wave excitation, while the other two are used for the inductive voltage measurement. There are nine selected places for the micro magnet on the top of the film. The micro magnet was subsequently placed in all nine positions and spin wave transmission and reflection were measured. The obtained experimental data show the difference in the output signal amplitude depending on the micro magnet position. All nine locations can be identified by the frequency and the amplitude of the absolute minimum in the output power. All experiments are accomplished at room temperature. Potentially, spin waves can be utilized for remote magnetic bit readout. The disadvantages and physical constraints of this approach are also discussed.
more »
« less
- Award ID(s):
- 2006290
- PAR ID:
- 10369002
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 2
- ISSN:
- 0021-8979
- Page Range / eLocation ID:
- Article No. 023902
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)x; TCNE = tetracyanoethylene;x≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)xis demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)xfilm can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)xfilm. In addition, it is shown that non‐coherent spin waves in a V(TCNE)xfilm, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x. Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐based magnets.more » « less
-
We provide a comprehensive progress update on spin wave logic circuits. First, we will present experimental data on magnetic bit readout using spin waves. The data are collected for Y3Fe2(FeO4)3 waveguide matrix with cobalt magnets placed on top of the waveguides. The magnetization direction of the magnets is recognized by the level of the inductive voltage produced by the spin waves. This approach allows us to retrieve information from a number of bits in parallel. Second, we will present experimental data on magnetic database search using spin wave superposition. The data are collected for the multi-port YIG devices. The applying of wave superposition makes it possible to speed up the search procedure compared to conventional magnetic memory. Finally, we will present experimental data on prime factorization using spin wave multi-port interferometers. The shortcomings and physical limits of spin wave logic devices will be also discussed.more » « less
-
Abstract Excitation of coherent high-frequency magnons (quanta of spin waves) is critical to the development of high-speed magnonic devices. Here we computationally demonstrate the excitation of coherent sub-terahertz (THz) magnons in ferromagnetic (FM) and antiferromagnetic (AFM) thin films by a photoinduced picosecond acoustic pulse. Analytical calculations are also performed to reveal the magnon excitation mechanism. Through spin pumping and spin-charge conversion, these magnons can inject sub-THz charge current into an adjacent heavy-metal film which in turn emits electromagnetic (EM) waves. Using a dynamical phase-field model that considers the coupled dynamics of acoustic waves, spin waves, and EM waves, we show that the emitted EM wave retains the spectral information of all the sub-THz magnon modes and has a sufficiently large amplitude for near-field detection. These predictions indicate that the excitation and detection of sub-THz magnons can be realized in rationally designed FM or AFM thin-film heterostructures via ultrafast optical-pump THz-emission-probe spectroscopy.more » « less
-
Abstract The emergence of new technological needs in 5 G/6 G networking and broadband satellite internet access amplifies the demand for innovative wireless communication hardware, including high-performance low-profile transceivers. In this context, antennas based on metasurfaces – artificial surfaces engineered to manipulate electromagnetic waves at will – represent highly promising solutions. In this article, we introduce leaky-wave metasurface antennas operating at micro/millimeter-wave frequencies that are designed using the principles of quasi-bound states in the continuum, exploiting judiciously tailored spatial symmetries that enable fully customized radiation. Specifically, we unveil additional degrees of control over leaky-wave radiation by demonstrating pointwise control of the amplitude, phase and polarization state of the metasurface aperture fields by carefully breaking relevant symmetries with tailored perturbations. We design and experimentally demonstrate metasurface antenna prototypes showcasing a variety of functionalities advancing capabilities in wireless communications, including single-input multi-output and multi-input multi-output near-field focusing, as well as far-field beam shaping.more » « less
An official website of the United States government
