skip to main content


Title: UGPS J194310+183851: an unusual optical and X-ray faint cataclysmic variable?
ABSTRACT

The growing number of multi-epoch optical and infrared sky surveys are uncovering unprecedented numbers of new variable stars, of an increasing number of types. The short interval between observations in adjacent near-infrared filters in the UKIDSS Galactic Plane Survey (UGPS) allows for the discovery of variability on the time-scale of minutes. We report on the nature of one such object, through the use of optical spectroscopy, time series photometry, and targeted X-ray observations. We propose that UGPS J194310.32+183851.8 is a magnetic cataclysmic variable star of novel character, probably featuring a longer than average spin period and an orbital period likely to be shorter than the period gap (i.e. Porb < 2 h). We reason that the star is likely a member of the short-period intermediate-polar subclass that exists below this period boundary, but with the additional feature that system’s spectral energy distribution is fainter and redder than other members of the group.

 
more » « less
NSF-PAR ID:
10369045
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
514
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 6002-6010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    CSS1603+19 is a cataclysmic variable (CV) with an orbital period of 81.96 min, near the minimal period of CVs. It is unusual in having a strong mid-infrared excess inconsistent with thermal emission from a brown dwarf companion. Here, we present time-resolved multiwavelength observations of this system. WISE photometry indicates that the mid-infrared excess displays a one-magnitude eclipsing-like variability during the orbit. We obtained near-infrared and optical spectroscopy using Gemini, MDM, and APO telescopes. Near-infrared spectra show possible cyclotron features indicating that the white dwarf has a magnetic field of about 5 MG. Optical and near-infrared spectra display double-peaked emission lines, with both components showing strong radial velocity variations during the orbital period and with the broad component leading the narrow component stably by about 0.2 of the orbital phase. We construct a physical model informed by existing observations of the system and determine that one component likely originates from the accretion column on to the magnetized white dwarf in synchronous rotation with the orbital motion and the other from the Roche overflow point. This allows us to constrain the masses of the binary components to be M1 > 0.24 M⊙ for the white dwarf accretor and M2 = 0.0644 ± 0.0074 M⊙ for the donor. We classify the system as an AM Herculis star, or a polar. It has likely completed its stint on the period gap, but has not yet gone through the period bounce.

     
    more » « less
  2. Abstract

    We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post–common envelope carbon–oxygen (CO) white dwarf, and a warm donor (Teff,donor= 16,400 ± 1000 K). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant that left behind a helium star or white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave–driven orbital inspiral with ∼51σsignificance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial velocity semiamplitude of 771 ± 27 km s−1, and high-speed photometry reveals that the system is eclipsing. We detect a Chandra X-ray counterpart withLX∼ 3 × 1031erg s−1. Depending on the mass transfer rate, the system will likely either evolve into a stably mass-transferring helium cataclysmic variable, merge to become an R CrB star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of 24 ± 6 after 4 yr of observations. The system is the first LISA-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution.

     
    more » « less
  3. ABSTRACT

    Extreme debris discs are characterized by unusually strong mid-infrared excess emission, which often proves to be variable. The warm dust in these discs is of transient nature and is likely related to a recent giant collision occurring close to the star in the terrestrial region. Here we present the results of a 877 d long, gap-free photometric monitoring performed by the Spitzer Space Telescope of the recently discovered extreme debris disc around TYC 4209-1322-1. By combining these observations with other time-domain optical and mid-infrared data, we explore the disc variability of the last four decades with particular emphasis on the last 12 yr. During the latter interval the disc showed substantial changes, the most significant was the brightening and subsequent fading between 2014 and 2018 as outlined in WISE data. The Spitzer light curves outline the fading phase and a subsequent new brightening of the disc after 2018, revealing an additional flux modulation with a period of ∼39 d on top of the long-term trend. We found that all these variations can be interpreted as the outcome of a giant collision that happened at an orbital radius of ∼0.3 au sometime in 2014. Our analysis implies that a collision on a similar scale could have taken place around 2010, too. The fact that the disc was already peculiarly dust rich 40 yr ago, as implied by IRAS data, suggests that these dust production events belong to a chain of large impacts triggered by an earlier even more catastrophic collision.

     
    more » « less
  4. Abstract

    We present high-cadence ultraviolet through near-infrared observations of the Type Ia supernova (SN Ia) 2023bee atD= 32 ± 3 Mpc, finding excess flux in the first days after explosion, particularly in our 10 minutes cadence TESS light curve and Swift UV data. Compared to a few other normal SNe Ia with early excess flux, the excess flux in SN 2023bee is redder in the UV and less luminous. We present optical spectra of SN 2023bee, including two spectra during the period where the flux excess is dominant. At this time, the spectra are similar to those of other SNe Ia but with weaker Siii, Cii,and Caiiabsorption lines, perhaps because the excess flux creates a stronger continuum. We compare the data to several theoretical models on the origin of early excess flux in SNe Ia. Interaction with either the companion star or close-in circumstellar material is expected to produce a faster evolution than observed. Radioactive material in the outer layers of the ejecta, either from double detonation explosion or from a56Ni clump near the surface, cannot fully reproduce the evolution either, likely due to the sensitivity of early UV observable to the treatment of the outer part of ejecta in simulation. We conclude that no current model can adequately explain the full set of observations. We find that a relatively large fraction of nearby, bright SNe Ia with high-cadence observations have some amount of excess flux within a few days of explosion. Considering potential asymmetric emission, the physical cause of this excess flux may be ubiquitous in normal SNe Ia.

     
    more » « less
  5. ABSTRACT

    The ultraviolet (UV) and near-infrared (NIR) photometric and optical spectroscopic observations of SN 2020acat covering ∼250 d after explosion are presented here. Using the fast rising photometric observations, spanning from the UV to NIR wavelengths, a pseudo-bolometric light curve was constructed and compared to several other well-observed Type IIb supernovae (SNe IIb). SN 2020acat displayed a very short rise time reaching a peak luminosity of $\mathrm{{\rm Log}_{10}}(L) = 42.49 \pm 0.17 \, \mathrm{erg \, s^{-1}}$ in only ∼14.6 ± 0.3 d. From modelling of the pseudo-bolometric light curve, we estimated a total mass of 56Ni synthesized by SN 2020acat of MNi = 0.13 ± 0.03 M⊙, with an ejecta mass of Mej = 2.3 ± 0.4 M⊙ and a kinetic energy of Ek = 1.2 ± 0.3 × 1051 erg. The optical spectra of SN 2020acat display hydrogen signatures well into the transitional period (≳ 100 d), between the photospheric and the nebular phases. The spectra also display a strong feature around 4900  Å that cannot be solely accounted for by the presence of the Fe ii 5018 line. We suggest that the Fe ii feature was augmented by He i 5016 and possibly by the presence of N ii 5005. From both photometric and spectroscopic analysis, we inferred that the progenitor of SN 2020acat was an intermediate-mass compact star with an MZAMS of 15–20 M⊙.

     
    more » « less