skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology
The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Aguirre, Windsor E.
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ant–plant interactions are diverse and abundant and include classic models in the study of mutualism and other biotic interactions. By estimating a time-scaled phylogeny of more than 1,700 ant species and a time-scaled phylogeny of more than 10,000 plant genera, we infer when and how interactions between ants and plants evolved and assess their macroevolutionary consequences. We estimate that ant–plant interactions originated in the Mesozoic, when predatory, ground-inhabiting ants first began foraging arboreally. This served as an evolutionary precursor to the use of plant-derived food sources, a dietary transition that likely preceded the evolution of extrafloral nectaries and elaiosomes. Transitions to a strict, plant-derived diet occurred in the Cenozoic, and optimal models of shifts between strict predation and herbivory include omnivory as an intermediate step. Arboreal nesting largely evolved from arboreally foraging lineages relying on a partially or entirely plant-based diet, and was initiated in the Mesozoic, preceding the evolution of domatia. Previous work has suggested enhanced diversification in plants with specialized ant-associated traits, but it appears that for ants, living and feeding on plants does not affect ant diversification. Together, the evidence suggests that ants and plants increasingly relied on one another and incrementally evolved more intricate associations with different macroevolutionary consequences as angiosperms increased their ecological dominance.

    more » « less
  2. Abstract The ability of organisms to cross ecosystem boundaries is an important catalyst of evolutionary diversification. The genus Poecilia (mollies and guppies) is an excellent system for studying ecosystem transitions because species display a range of salinity and dietary preferences, with herbivory concentrated in the subgenus Mollienesia. We reconstructed ancestral habitats and diets across a phylogeny of the genus Poecilia, evaluated diversification rates and used phylogenetically independent contrasts to determine whether diet evolved in response to habitat transition in this group. The results suggest that ancestors of subgenus Mollienesia were exclusively herbivorous, whereas ancestral diets of other Poecilia included animals. We found that transitions across euryhaline boundaries occurred at least once in this group, probably after the divergence of the subgenus Mollienesia. Furthermore, increased salinity affiliation explained 24% of the decrease in animals in the gut, and jaw morphology was associated with the percentage of animals in the gut, but not with the percentage of species occupying saline habitats. These findings suggest that in the genus Poecilia, herbivory evolved in association with transitions from fresh to euryhaline habitats, and jaw morphology evolved in response to the appearance of herbivory. These results provide a rare example of increased diet diversification associated with the transition from freshwater to euryhaline habitats. 
    more » « less
  3. Abstract

    Fish scales are bony plates embedded in the skin that vary extensively in shape across taxa. Despite a plethora of hypotheses regarding form–function relationships in scales, we know little about the ecological selective factors that shape their diversity. Here we examine evolutionary patterns of scale morphology using novel three-dimensional topography from the surfaces of 59 species of damselfishes, a prominent radiation of coral reef fishes. We find evidence that scale morphology changes with different flow environments, such that species that spend more time in open-water habitats have smoother scales. We also show that other aspects of ecology lead to highly derived scales. For example, anemonefishes show an evolutionary transition to smaller scales and smaller ctenii (scale spines). Moreover, changes in body shape, which may reflect ecological differentiation, are related to scale shape but not surface properties. We also demonstrate weak evolutionary integration among multiple aspects of scale morphology; however, scale size and shape are related, and scale morphology is correlated between different body regions. Finally, we also identify a relationship between aspects of lateral line pore morphology, such that the number of lateral line pores per scale and the size of those pores are inversely related. Overall, our study provides insights into the multidimensionality of scale evolution and improves our understanding of some of the factors that can give rise to the diversity of scales seen across fishes.

    more » « less
  4. Abstract

    Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families—genes directly mediating interactions with plant chemical defenses—underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.

    more » « less
  5. Abstract

    Damselfishes (Family: Pomacentridae) are a group of ecologically important, primarily coral reef fishes that include over 400 species. Damselfishes have been used as model organisms to study recruitment (anemonefishes), the effects of ocean acidification (spiny damselfish), population structure, and speciation (Dascyllus). The genus Dascyllus includes a group of small-bodied species, and a complex of relatively larger bodied species, the Dascyllus trimaculatus species complex that is comprised of several species including D. trimaculatus itself. The three-spot damselfish, D. trimaculatus, is a widespread and common coral reef fish species found across the tropical Indo-Pacific. Here, we present the first-genome assembly of this species. This assembly contains 910 Mb, 90% of the bases are in 24 chromosome-scale scaffolds, and the Benchmarking Universal Single-Copy Orthologs score of the assembly is 97.9%. Our findings confirm previous reports of a karyotype of 2n = 47 in D. trimaculatus in which one parent contributes 24 chromosomes and the other 23. We find evidence that this karyotype is the result of a heterozygous Robertsonian fusion. We also find that the D. trimaculatus chromosomes are each homologous with single chromosomes of the closely related clownfish species, Amphiprion percula. This assembly will be a valuable resource in the population genomics and conservation of Damselfishes, and continued studies of the karyotypic diversity in this clade.

    more » « less