Ant–plant interactions are diverse and abundant and include classic models in the study of mutualism and other biotic interactions. By estimating a time-scaled phylogeny of more than 1,700 ant species and a time-scaled phylogeny of more than 10,000 plant genera, we infer when and how interactions between ants and plants evolved and assess their macroevolutionary consequences. We estimate that ant–plant interactions originated in the Mesozoic, when predatory, ground-inhabiting ants first began foraging arboreally. This served as an evolutionary precursor to the use of plant-derived food sources, a dietary transition that likely preceded the evolution of extrafloral nectaries and elaiosomes. Transitions to a strict, plant-derived diet occurred in the Cenozoic, and optimal models of shifts between strict predation and herbivory include omnivory as an intermediate step. Arboreal nesting largely evolved from arboreally foraging lineages relying on a partially or entirely plant-based diet, and was initiated in the Mesozoic, preceding the evolution of domatia. Previous work has suggested enhanced diversification in plants with specialized ant-associated traits, but it appears that for ants, living and feeding on plants does not affect ant diversification. Together, the evidence suggests that ants and plants increasingly relied on one another and incrementally evolved more intricate associations with different macroevolutionary consequences as angiosperms increased their ecological dominance.
- Award ID(s):
- 2054285
- PAR ID:
- 10369100
- Editor(s):
- Aguirre, Windsor E.
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0258889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Surfperches and damselfishes are very closely related ovalentarians with large reproductive differences. Damselfishes are typical of most Ovalentaria in that they lay demersal eggs that hatch into small, free-feeding larvae. Surfperches are unusual among ovalentarians and most acanthomorphs in having prolonged internal development. They are born at an advanced stage, some as adults, and bypass the need to actively feed throughout an extended period of ontogeny. Damselfishes and surfperches possess the same modifications of the fifth branchial arch that allow them to perform advanced food processing within the pharynx. This condition (pharyngognathy) has large effects on the evolution of feeding mechanics and trophic ecology. Although the evolution of pharyngognaths has received considerable attention, the effects of different reproductive strategies on their diversification have not been examined. We compared head shape evolution in surfperches and damselfishes using geometric morphometrics, principal component analyses, and multiple phylogenetic-comparative techniques. We found that they have similar mean head shapes, that their primary axes of shape variation are comparable and distinguish benthic-feeding and pelagic-feeding forms in each case, and that, despite large differences in crown divergence times, their head shape disparities are not significantly different. Several lines of evidence suggest that evolution has been more constrained in damselfishes: Head shape is evolving faster in surfperches, more anatomical traits have undergone correlated evolution in damselfishes, there is significant phylogenetic signal in damselfish evolution (but not surfperches), and damselfishes exhibit significant allometry in head shape that is not present in surfperches.
-
Abstract The ability of organisms to cross ecosystem boundaries is an important catalyst of evolutionary diversification. The genus Poecilia (mollies and guppies) is an excellent system for studying ecosystem transitions because species display a range of salinity and dietary preferences, with herbivory concentrated in the subgenus Mollienesia. We reconstructed ancestral habitats and diets across a phylogeny of the genus Poecilia, evaluated diversification rates and used phylogenetically independent contrasts to determine whether diet evolved in response to habitat transition in this group. The results suggest that ancestors of subgenus Mollienesia were exclusively herbivorous, whereas ancestral diets of other Poecilia included animals. We found that transitions across euryhaline boundaries occurred at least once in this group, probably after the divergence of the subgenus Mollienesia. Furthermore, increased salinity affiliation explained 24% of the decrease in animals in the gut, and jaw morphology was associated with the percentage of animals in the gut, but not with the percentage of species occupying saline habitats. These findings suggest that in the genus Poecilia, herbivory evolved in association with transitions from fresh to euryhaline habitats, and jaw morphology evolved in response to the appearance of herbivory. These results provide a rare example of increased diet diversification associated with the transition from freshwater to euryhaline habitats.more » « less
-
Abstract Damselfishes (Family: Pomacentridae) are a group of ecologically important, primarily coral reef fishes that include over 400 species. Damselfishes have been used as model organisms to study recruitment (anemonefishes), the effects of ocean acidification (spiny damselfish), population structure, and speciation (Dascyllus). The genus Dascyllus includes a group of small-bodied species, and a complex of relatively larger bodied species, the Dascyllus trimaculatus species complex that is comprised of several species including D. trimaculatus itself. The three-spot damselfish, D. trimaculatus, is a widespread and common coral reef fish species found across the tropical Indo-Pacific. Here, we present the first-genome assembly of this species. This assembly contains 910 Mb, 90% of the bases are in 24 chromosome-scale scaffolds, and the Benchmarking Universal Single-Copy Orthologs score of the assembly is 97.9%. Our findings confirm previous reports of a karyotype of 2n = 47 in D. trimaculatus in which one parent contributes 24 chromosomes and the other 23. We find evidence that this karyotype is the result of a heterozygous Robertsonian fusion. We also find that the D. trimaculatus chromosomes are each homologous with single chromosomes of the closely related clownfish species, Amphiprion percula. This assembly will be a valuable resource in the population genomics and conservation of Damselfishes, and continued studies of the karyotypic diversity in this clade.
-
Abstract Fish scales are bony plates embedded in the skin that vary extensively in shape across taxa. Despite a plethora of hypotheses regarding form–function relationships in scales, we know little about the ecological selective factors that shape their diversity. Here we examine evolutionary patterns of scale morphology using novel three-dimensional topography from the surfaces of 59 species of damselfishes, a prominent radiation of coral reef fishes. We find evidence that scale morphology changes with different flow environments, such that species that spend more time in open-water habitats have smoother scales. We also show that other aspects of ecology lead to highly derived scales. For example, anemonefishes show an evolutionary transition to smaller scales and smaller ctenii (scale spines). Moreover, changes in body shape, which may reflect ecological differentiation, are related to scale shape but not surface properties. We also demonstrate weak evolutionary integration among multiple aspects of scale morphology; however, scale size and shape are related, and scale morphology is correlated between different body regions. Finally, we also identify a relationship between aspects of lateral line pore morphology, such that the number of lateral line pores per scale and the size of those pores are inversely related. Overall, our study provides insights into the multidimensionality of scale evolution and improves our understanding of some of the factors that can give rise to the diversity of scales seen across fishes.