Compared with current powder-based 3D metal printing, thixotropic metal 3D printing has great potentials and advantages in equipment cost, product quality, and process efficiency. In this paper, detailed problem statement, technique challenge, and development method regarding thixotropic metal 3D printing are discussed. A shear mixing and extruding prototype machine for thixotropic alloy fabrication was designed. We developed a direct thixotropic metal 3D printing machine and conducted a modeling and simulation process for the system. The printability of this direct metal 3D printing machine was studied. At the end, conclusions and future directions are also presented.
more »
« less
From semisolid metal processing to thixotropic 3D printing of metallic alloys
Semisolid metal processing is a well-known technology that can be used to enhance manufacturing product quality in broad industries. The technology controls the thixotropic properties of alloys within their solidus and liquidus temperature ranges. In general, most known alloys can generate semisolid slurries at high solid fractions, and the remaining can form slurries at low solid fractions. This has provided opportunities for many metals and alloys to be processed as semisolid slurries in today’s casting industry. However, only a few researchers studied this technology potentially for a new metal-based additive manufacturing or 3D printing process. This article reviewed literature and findings from thixotropy rheology and semisolid metal processing methods, finally to thixotropic metal 3D printing. The survey shows that more future work is needed, including the investigation of thixotropic metal flow mechanics, the modelling and simulation of semisolid metal extrusion and further development of a fully thixotropic 3D printing system.
more »
« less
- Award ID(s):
- 2027823
- PAR ID:
- 10369103
- Editor(s):
- Chee Kai Cha
- Date Published:
- Journal Name:
- Virtual and physical prototyping
- Volume:
- VOL. 17
- Issue:
- NO. 3
- ISSN:
- 1745-2759
- Page Range / eLocation ID:
- 489–507
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chee Kai Cha (Ed.)Compared with current powder-based 3D metal printing, thixotropic metal 3D printing has great potentials and advantages in equipment cost, product quality, and process efficiency. In this paper, detailed problem statement, technique challenge, and development method regarding thixotropic metal 3D printing are discussed. A shear mixing and extruding prototype machine for thixotropic alloy fabrication was designed. We developed a direct thixotropic metal 3D printing machine and conducted a modeling and simulation process for the system. The printability of this direct metal 3D printing machine was studied. At the end, conclusions and future directions are also presented.more » « less
-
Additive manufacturing (AM) also known as 3D printing is a technology that builds three-dimensional (3-D) solid objects. Customized 3D objects with complex geometries and integrated functional designs can be created using 3D printing. A comprehensive review of AM process with emphasis on recent advances achieved by various researchers and industries is discussed. Summary of each 3D printing technology capabilities, advantages and limitations is provided. This article reviews significant developments of 3D printing applications in different fields such as electronics, medical industry, aerospace, automobile, construction, fashion and food industry.more » « less
-
null (Ed.)Abstract Following the success of 3D printing with synthetic polymers like ABS, FLA, Nylon, etc., scientists and researchers have been putting efforts into fabricating bio-compatible materials. It has not only broadened the field of bioengineering and manufacturing but also regenerative medicine. Unlike the traditional 3D printing process, additive bio-manufacturing, also known as 3D bio-printing has a lot of challenges like cell survivability and proliferation, and the mechanical properties of the biomaterials which involve printability and the ability to hold its structural integrity. Proper design of experiments with extensive rheological investigation can help identify useful mechanical property ranges which are directly related to the geometric fidelity of 3D bio-printed scaffolds. Therefore, to investigate the printability of a low viscosity Alginate-Carboxymethyl Cellulose (CMC), multiple concentrations of the mixture were tested maintaining a 8% (w/v) solid content. A set of rheological tests such as the Steady Rate Sweep Test, Three Point Thixotropic Test (3ITT), and Amplitude test were performed. The outcome of those tests showed that the rheological properties can be controlled with the percentage of CMC in the mixtures. The fabricated filaments and scaffolds in the 5 combinations of CMC percentages were analyzed for flowability and shape fidelity. The rheological results and the printability and shape fidelity results were analyzed.more » « less
-
The promising success of 3D printing technique with synthetic polymers like nylon, ABS, PLA and epoxy motivates the researchers to put efforts into fabricating constructs with biocompatible natural polymers. The efforts have been broadened into various fields such as bioengineering, manufacturing, and regenerative medicine. Additive biomanufacturing commonly known as 3D bioprinting shows a lot of potential in tissue engineering with those natural polymers. Some challenges such as achieving printability, maintaining geometry in post printing stage, comforting encapsulated cells, and ensuring high proliferation are to be resolved to turn this process into a successful trial. Appropriate design of experiments with a detail rheological investigation can identify useful mechanical properties which is directly related to shape fidelity of 3D bio-printed scaffolds. As candidate natural polymers, Alginate-low viscous Carboxymethyl Cellulose (CMC) was used restricting the solid content 8% (w/v). Various rheological tests, such as the Steady Rate Sweep Test, Thixotropic (3ITT), Amplitude, and Frequency test were performed. The result indicated that rheological properties are CMC dependent. Printability and shape fidelity were analyzed of the filaments and scaffolds fabricated with all the combinations. The rheological results were co-related with the printability and shape fidelity result.more » « less
An official website of the United States government

