skip to main content


Title: Effect of Additive Manufacturing on β‐Phase Poly(Vinylidene Fluoride)‐Based Capacitive Temperature Sensors
  more » « less
NSF-PAR ID:
10369116
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
11
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3,BT) ceramics using the paste extrusion 3D printing technique. TheBTceramic is a lead‐free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulkBTceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containingBTceramic powder, polyvinylidene fluoride (PVDF), N,N‐dimethylformamide (DMF) through simple mixing method and chemical formulation. ThisPVDFsolution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximumBTcontent is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3(65.3%) for 3D printedBTceramic. Among different sintering temperatures, it was observed that the sinteredBTceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology.

     
    more » « less
  2. Abstract

    The demand for the capacitive sensor has attracted substantial attention in monitoring pressure due to its distinctive design and passive nature with versatile sensing capability. The effectiveness of the capacitive sensor primarily relies on the variation in thickness of the dielectric layer sandwiched between conductive electrodes. Additive manufacturing (AM), a set of advanced fabrication techniques, enables the production of functional electronic devices in a single-step process. Particularly, the 3D printing approach based on photocuring is a tailorable process in which the resin consists of multiple components that deliver essential mechanical qualities with enhanced sensitivity towards targeted measurements. However, the availability of photocurable resin exhibiting essential flexibility and dielectric properties for the UV-curing production process is limited. The necessity of a highly stable and sensitive capacitive sensor demands a photocurable polymer resin with a higher dielectric constant and conductive electrodes. The primary purpose of this study is to design and fabricate a capacitive device composed of novel photocurable Polyvinylidene fluoride (PVDF) resin utilizing an LCD process exhibiting higher resolution with electrodes embedded inside the substrate. The embedded electrode channels in PVDF substrate are filled with conductive silver paste by an injection process. The additively manufactured sensor provides pressure information by means of a change in capacitance of the dielectric material between the electrodes. X-Ray based micro CT-Scan ex-situ analysis is performed to visualize the capacitance based sensor filled with conductive electrodes. The sensor is tested to measure capacitance response with changes in pressure as a function of time that are utilized for sensitivity analysis. This work represents a significant achievement of AM integration in developing efficient and robust capacitive sensors for pressure monitoring or wearable electronic applications.

     
    more » « less
  3. Abstract

    Structural color printings have broad applications due to their advantages of long-term sustainability, eco-friendly manufacturing, and ultra-high resolution. However, most of them require costly and time-consuming fabrication processes from nanolithography to vacuum deposition and etching. Here, we demonstrate a new color printing technology based on polymer-assisted photochemical metal deposition (PPD), a room temperature, ambient, and additive manufacturing process without requiring heating, vacuum deposition or etching. The PPD-printed silver films comprise densely aggregated silver nanoparticles filled with a small amount (estimated <20% volume) of polymers, producing a smooth surface (roughness 2.5 nm) even better than vacuum-deposited silver films (roughness 2.8 nm) at ~4 nm thickness. Further, the printed composite films have a much larger effective refractive indexn(~1.90) and a smaller extinction coefficientk(~0.92) than PVD ones in the visible wavelength range (400 to 800 nm), therefore modulating the surface reflection and the phase accumulation. The capability of PPD in printing both ultra-thin (~5 nm) composite films and highly reflective thicker film greatly benefit the design and construction of multilayered Fabry–Perot (FP) cavity structures to exhibit vivid and saturated colors. We demonstrated programmed printing of complex pictures of different color schemes at a high spatial resolution of ~6.5 μm by three-dimensionally modulating the top composite film geometries and dielectric spacer thicknesses (75 to 200 nm). Finally, PPD-based color picture printing is demonstrated on a wide range of substrates, including glass, PDMS, and plastic, proving its broad potential in future applications from security labeling to color displays.

     
    more » « less
  4. Abstract Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous β-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45–60%) and fluid conductance (between 1.04 ×10 −9 and 2.27 × 10 −9  m 4 s/kg) of the β-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications. 
    more » « less
  5. Abstract

    Inflatable structures, promising for future deep space exploration missions, are vulnerable to damage from micrometeoroid and orbital debris impacts. Polyvinylidene fluoride-trifluoroethylene (PVDF-trFE) is a flexible, biocompatible, and chemical-resistant material capable of detecting impact forces due to its piezoelectric properties. This study used a state-of-the-art material extrusion system that has been validated for in-space manufacturing, to facilitate fast-prototyping of consistent and uniform PVDF-trFE films. By systematically investigating ink synthesis, printer settings, and post-processing conditions, this research established a comprehensive understanding of the process-structure-property relationship of printed PVDF-trFE. Consequently, this study consistently achieved the printing of PVDF-trFE films with a thickness of around 40 µm, accompanied by an impressive piezoelectric coefficient of up to 25 pC/N. Additionally, an all-printed dynamic force sensor, featuring a sensitivity of 1.18 V/N, was produced by mix printing commercial electrically-conductive silver inks with the customized PVDF-trFE inks. This pioneering on-demand fabrication technique for PVDF-trFE films empowers future astronauts to design and manufacture piezoelectric sensors while in space, thereby significantly enhancing the affordability and sustainability of deep space exploration missions.

     
    more » « less