skip to main content


Title: Predicting implementation of active learning by tenure-track teaching faculty using robust cluster analysis
Abstract Background

The University of California system has a novel tenure-track education-focused faculty position called Lecturer with Security of Employment (working titles: Teaching Professor or Professor of Teaching). We focus on the potential difference in implementation of active-learning strategies by faculty type, including tenure-track education-focused faculty, tenure-track research-focused faculty, and non-tenure-track lecturers. In addition, we consider other instructor characteristics (faculty rank, years of teaching, and gender) and classroom characteristics (campus, discipline, and class size). We use a robust clustering algorithm to determine the number of clusters, identify instructors using active learning, and to understand the instructor and classroom characteristics in relation to the adoption of active-learning strategies.

Results

We observed 125 science, technology, engineering, and mathematics (STEM) undergraduate courses at three University of California campuses using the Classroom Observation Protocol for Undergraduate STEM to examine active-learning strategies implemented in the classroom. Tenure-track education-focused faculty are more likely to teach with active-learning strategies compared to tenure-track research-focused faculty. Instructor and classroom characteristics that are also related to active learning include campus, discipline, and class size. The campus with initiatives and programs to support undergraduate STEM education is more likely to have instructors who adopt active-learning strategies. There is no difference in instructors in the Biological Sciences, Engineering, or Information and Computer Sciences disciplines who teach actively. However, instructors in the Physical Sciences are less likely to teach actively. Smaller class sizes also tend to have instructors who teach more actively.

Conclusions

The novel tenure-track education-focused faculty position within the University of California system represents a formal structure that results in higher adoption of active-learning strategies in undergraduate STEM education. Campus context and evolving expectations of the position (faculty rank) contribute to the symbols related to learning and teaching that correlate with differential implementation of active learning.

 
more » « less
Award ID(s):
1832538 1821724
NSF-PAR ID:
10369167
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
9
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    An instructor’s conceptions of teaching and learning contribute to the establishment of learning environments that may benefit or hinder student learning. Previous studies have defined the continuum of teaching and learning conceptions, ranging from limited to complete, as well as the instructional practices that they help to inform (instructor-centered to student-centered), and the corresponding learning environments that these conceptions and practices establish, ranging from traditional to student-centered. Using the case of one STEM department at a research-intensive, minority serving institution, we explored faculty’s conceptions of teaching and learning and their resulting instructional practices, as well as uncovered their perspectives on the intradepartmental faculty interactions related to teaching. The study participants were drawn from both teaching-focused (called Professors of Teaching, PoTs) and traditional research (whom we call Research Professors, RPs) tenure-track faculty lines to identify whether differences existed amongst these two populations. We used interviews to explore faculty conceptions and analyzed syllabi to unveil how these conceptions shape instructional environments.

    Results

    Overall, PoTs exhibited complete conceptions of teaching and learning that emphasized student ownership of learning, whereas RPs possessed intermediate conceptions that focused more on transmitting knowledge and helping students prepare for subsequent courses. While both PoTs and RPs self-reported the use of active learning pedagogies, RPs were more likely to also highlight the importance of traditional lecture. The syllabi analysis revealed that PoTs enacted more student-centered practices in their classrooms compared to RPs. PoTs appeared to be more intentionally available to support students outside of class and encouraged student collaboration, while RPs focused more on the timeliness of assessments and enforcing more instructor-centered approaches in their courses. Finally, the data indicated that RPs recognized PoTs as individuals who were influential on their own teaching conceptions and practices.

    Conclusions

    Our findings suggest that departments should consider leveraging instructional experts who also possess a disciplinary background (PoTs) to improve their educational programs, both due to their student-centered impacts on the classroom environment and positive influence on their colleagues (RPs). This work also highlights the need for higher education institutions to offer appropriate professional development resources to enable faculty to reflect on their teaching and learning conceptions, aid in their pedagogical evolution, and guide the implementation of these conceptions into practice.

     
    more » « less
  2. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have liked to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs. 
    more » « less
  3. Improving undergraduate STEM teaching for diverse students is dependent to some extent on increasing the representation of Black, Indigenous and People of Color (BIPOC) and women in the ranks of faculty in engineering departments. However, new faculty members, whether they had postdoctoral training or not, report that they were not adequately prepared for academia. To address this need, a professional development program was developed for underrepresented doctoral and postdoctoral students, which focused on various strategies to be successful in teaching, research and service aspects of academic positions. The program included an intensive two-week summer session, with follow-up mentoring during the academic year, and was conducted from 2017 to 2020 with three cohorts of fellows recruited from across the country. To evaluate the impact of the program on the participants’ perceptions of their preparation for academic careers, a follow up survey was sent in May 2021 to the three former cohorts of participants (n=61), and responses were received from 37 of them. The survey asked participants to reflect on areas that they felt most prepared for in their academic positions, and areas that they felt least prepared for. The survey also asked participants to discuss additional supports they would have liked to have been provided with to better prepare them given their current positions (academic, industry, etc.). Results from the survey indicated that 92% of participants found the professional development program prepared them for the responsibilities and expectations to succeed in academic positions. Over 90% agreed that the program prepared them for the application process for a tenure track search, and 89% agreed the program prepared them for the primary components of the startup package. In addition, participants reported that the program increased their preparation in developing teaching philosophy (100%), developing learning outcomes (97%), and using active learning strategies during teaching (91%). The majority agreed that the program helped prepare them to teach students with various cultural backgrounds, and to develop and use assessment strategies. Participants were also asked to discuss the impact of the Covid 19 pandemic on their career trajectory, and most of them reported being somewhat impacted (65%) to extremely impacted (29%). Participants reported few or no job openings, cancelations of interviews, delays in research which impacted the rate of completing degrees, and publications, which affected the participants’ application competitiveness. Furthermore, working from home and balancing family and academic responsibilities affected their productivity. Based on the survey results, funds were secured to provide an additional day of professional training to cover any items not addressed during summer training, as well as any issues, challenges, or concerns they might have encountered while fulfilling their academic position. Thirty-three ACADEME fellows have indicated that they will participate in the new professional development, held in May 2022. Results from this analysis, and preliminary topics and outcomes of the supplemental activities are discussed. The findings contribute to the literature by increasing knowledge of specific challenges that new faculty encounter and can inform future efforts to support minorities and women in engineering doctoral programs. 
    more » « less
  4. Foundational engineering courses are critical to student success in engineering programs. The conceptually challenging content of these courses establishes the requisite knowledge for future classes. Thus, it is no surprise that such courses can serve as barriers or gatekeepers to successful student progress through the undergraduate curriculum. Although the difficulty of the courses may be necessary, often other features of the course delivery such as large class environments or a few very high-stakes assessments can further exacerbate these challenges. And especially problematic, past studies have shown that grade penalties associated with these courses and environments may disproportionately impact women. On the faculty side, institutions often turn to non-tenure track instructional faculty to teach multiple sections of foundational courses each semester. Although having faculty whose sole role is dedicated to quality teaching is an asset, benefits would likely be maximized when such faculty have clear metrics for paths to promotion, some autonomy and ownership regarding the curriculum, and overall job satisfaction. However, literature suggests that faculty, like students, note ill effects from large classes, such as challenges connecting and building rapport with students and having time to offer individualized feedback to students. Our NSF IUSE project focuses on instructors of large foundational engineering students with the belief that by better understanding the educational environment from their perspective we can improve the quality of the teaching and learning environment for all engineering students. Our project regularly convenes faculty teaching an array of core courses (e.g,. Mathematics, Chemistry, Mechanics, Physics) and uses insights from these meetings and individual interviews to identify possible leverage points where our project or the institution more broadly might affect change. Parallel to this effort, we have been working with data stewards on campus to gain access to institutional data (e.g., student course and grade histories, student evaluations of faculty teaching) to link and provide aggregate deidentified results to faculty to feed more information in to their decision-making. We are demonstrating that regular engagement between faculty and institutional leaders around analyzed and curated data is essential to continuous and systematic improvement. Efforts to date have included building an institutional data explorer dashboard (e.g., influences of pre-requisite courses on future courses) and drafting reports to be sent to department heads and associate deans which gather priorities identified in the first year of our research. For example, participating instructors identified that clarity of promotion paths across non-tenure track teaching faculty from different departments varied greatly, and the institution as a whole could benefit from clarified university-wide guidance. While some findings may be institution-specific (NSF IUSE Institutional Transformation track), as a large public research institution, peer-institutions with high engineering enrollments often face similar challenges and so findings from our change efforts potentially have broad applicability. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less