Transition metal dichalcogenides (TMDs) such as the WS2 have been widely studied as potential electrode materials for lithium-ion batteries (LIB) owing to TMDs’ layered morphology and reversible conversion reaction with the alkali metals between 0 to 2 V (v/s Li/Li+) potentials. However, works involving TMD materials as electrodes for sodium- (NIBs) and potassium-ion batteries (KIBs) are relatively few, mainly due to poor electrode performance arising from significant volume changes and pulverization by the larger size alkali-metal ions. Here, we show that Na+ and K+ cyclability in WS2 TMD is improved by introducing WS2 nanosheets in a chemically and mechanically robust matrix comprising precursor-derived ceramic (PDC) silicon oxycarbide (SiOC) material. The WS2/SiOC composite in fibermat morphology was achieved via electrospinning followed by thermolysis of a polymer solution consisting of a polysiloxane (precursor to SiOC) dispersed with exfoliated WS2 nanosheets. The composite electrode was successfully tested in Na-ion and K-ion half-cells as a working electrode, which rendered the first cycle charge capacity of 474.88 mAh g−1 and 218.91 mAh g−1, respectively. The synergistic effect of the composite electrode leads to higher capacity and improved coulombic efficiency compared to the neat WS2 and neat SiOC materials in these cells. 
                        more » 
                        « less   
                    
                            
                            Enhanced Li-Ion Rate Capability and Stable Efficiency Enabled by MoSe2 Nanosheets in Polymer-Derived Silicon Oxycarbide Fiber Electrodes
                        
                    
    
            Transition metal dichalcogenides (TMDs) such as MoSe2 have continued to generate interest in the engineering community because of their unique layered morphology—the strong in-plane chemical bonding between transition metal atoms sandwiched between two chalcogen atoms and the weak physical attraction between adjacent TMD layers provides them with not only chemical versatility but also a range of electronic, optical, and chemical properties that can be unlocked upon exfoliation into individual TMD layers. Such a layered morphology is particularly suitable for ion intercalation as well as for conversion chemistry with alkali metal ions for electrochemical energy storage applications. Nonetheless, host of issues including fast capacity decay arising due to volume changes and from TMD’s degradation reaction with electrolyte at low discharge potentials have restricted use in commercial batteries. One approach to overcome barriers associated with TMDs’ chemical stability functionalization of TMD surfaces by chemically robust precursor-derived ceramics or PDC materials, such as silicon oxycarbide (SiOC). SiOC-functionalized TMDs have shown to curb capacity degradation in TMD and improve long term cycling as Li-ion battery (LIBs) electrodes. Herein, we report synthesis of such a composite in which MoSe2 nanosheets are in SiOC matrix in a self-standing fiber mat configuration. This was achieved via electrospinning of TMD nanosheets suspended in pre-ceramic polymer followed by high temperature pyrolysis. Morphology and chemical composition of synthesized material was established by use of electron microscopy and spectroscopic technique. When tested as LIB electrode, the SiOC/MoSe2 fiber mats showed improved cycling stability over neat MoSe2 and neat SiOC electrodes. The freestanding composite electrode delivered a high charge capacity of 586 mAh g−1electrode with an initial coulombic efficiency of 58%. The composite electrode also showed good cycling stability over SiOC fiber mat electrode for over 100 cycles. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743701
- PAR ID:
- 10369188
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The superior properties, such as large interlayer spacing and the ability to host large alkali-metal ions, of two-dimensional (2D) materials based on transition metal di-chalcogenides (TMDs) enable next-generation battery development beyond lithium-ion rechargeable batteries. In addition, compelling but rarely inspected TMD alloys provide additional opportunities to tailor bandgap and enhance thermodynamic stability. This study explores the sodium-ion (Na-ion) and potassium-ion (K-ion) storage behavior of cation-substituted molybdenum tungsten diselenide (MoWSe2), a TMD alloy. This research also investigates upper potential suspension to overcome obstacles commonly associated with TMD materials, such as capacity fading at high current rates, prolonged cycling conditions, and voltage polarization during conversion reaction. The voltage cut-off was restricted to 1.5 V, 2.0 V, and 2.5 V to realize the material’s Na+and K+ion storage behavior. Three-dimensional (3D) surface plots of differential capacity analysis up to prolonged cycles revealed the convenience of voltage suspension as a viable method for structural preservation. Moreover, the cells with higher potential cut-off values conveyed improved cycling stability, higher and stable coulombic efficiency for Na+and K+ion half-cells, and increased capacity retention for Na+ion half-cells, respectively, with half-cells cycled at higher voltage ranges.more » « less
- 
            Insertion of metal layers between layered transition-metal dichalcogenides (TMDs) enables the design of new pseudo-2D nanomaterials. The general premise is that various metal atoms may adopt energetically favorable intercalation sites between two TMD sheets. These covalently bound metals arrange in metastable configurations and thus enable the controlled synthesis of nanomaterials in a bottom-up approach. Here, this method is demonstrated by the insertion of Cr or Mn between VSe2 layers. Vacuum-deposited transition metals diffuse between VSe2 layers with increasing concentration, arranging in ordered phases. The Cr3+ or Mn2+ ions are in octahedral coordination and thus in a high-spin state. Measured and computed magnetic moments are high for dilute Cr atoms, but with increasing Cr concentration the average magnetic moment decreases, suggesting antiferromagnetic ordering between Cr ions. The many possible combinations of transition metals with TMDs form a library for exploring quantum phenomena in these nanomaterials.more » « less
- 
            Layer-structured Na intercalation compounds such as NaxMO2 (M=Co, Mn, Cr) have attracted much attention as cathode materials for sodium-ion batteries due to their high volumetric and gravimetric energy densities. Among them, NaCrO2 with layered rock salt structure is one of the promising cathodes since NaCrO2 has a desirable flat and smooth charge/discharge voltage plateau.1 In addition, NaCrO2 has the highest thermal stability at charged state which makes it a potentially safer cathode material.2 The NaCrO2 exhibits a reversible capacity of 110 mAh g-1 with good cycling performance.3 However, the transition metal oxide (TMO) cathode materials in NIBs undergo severe chemo-mechanical deformations which leads to capacity fade and poor cycling and is the limiting factor of NIBs. The electrochemical characterization and examination of the electrode structure were the primary focus of several investigations. To improve the lifespan and performance of electrode materials for Na-ion batteries, it is vital to comprehend how Na ions impact the chemo-mechanical stability of the electrodes. In this talk, we will discuss the driving forces behind the structural and interfacial deformations on NaCrO2 cathodes. Digital image correlation measurements were conducted to probe strain evolution in the electrode during cycling. The free-standing composite NaCrO2 electrode was used for stain measurements in custom-cell assembly. The battery was cycled against Na metal in 1 M NaClO4 in PC. The first part of the study involves structural and interfacial deformations in the lower voltage range of 2.3 V to 3.5 V where x<0.5 in NaxCrO2. And the second part focuses on the structural and interfacial deformations in the voltage range of 2.3 V to 4.7 V where x>0.5 in NaxCrO2. In the preliminary studies, we observed that the initial insertion of Na ions leads to negative strain evolution (contraction) in the electrode, followed by expansions in the electrode at a higher state of discharge. Similar phenomena are also observed during charge cycles, where extraction of Na results in an initial contraction in the electrode, followed by expansion at a higher state of charge. Understanding the mechanisms behind chemo-mechanical deformations will allow to tune structure & material property for better electrochemical performance.more » « less
- 
            null (Ed.)Abstract Ammonium vanadate with bronze structure (NH 4 V 4 O 10 ) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH 4 V 4 O 10 through heat treatment; NH 4 V 4 O 10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH 4 V 4 O 10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g −1 at a current density of 100 mA g −1 and a capacity retention of 81% over 1000 cycles at 2 A g −1 . The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH 4 V 4 O 10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    