- Award ID(s):
- 1743701
- NSF-PAR ID:
- 10369188
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Transition metal dichalcogenides (TMDs) such as the WS2 have been widely studied as potential electrode materials for lithium-ion batteries (LIB) owing to TMDs’ layered morphology and reversible conversion reaction with the alkali metals between 0 to 2 V (v/s Li/Li+) potentials. However, works involving TMD materials as electrodes for sodium- (NIBs) and potassium-ion batteries (KIBs) are relatively few, mainly due to poor electrode performance arising from significant volume changes and pulverization by the larger size alkali-metal ions. Here, we show that Na+ and K+ cyclability in WS2 TMD is improved by introducing WS2 nanosheets in a chemically and mechanically robust matrix comprising precursor-derived ceramic (PDC) silicon oxycarbide (SiOC) material. The WS2/SiOC composite in fibermat morphology was achieved via electrospinning followed by thermolysis of a polymer solution consisting of a polysiloxane (precursor to SiOC) dispersed with exfoliated WS2 nanosheets. The composite electrode was successfully tested in Na-ion and K-ion half-cells as a working electrode, which rendered the first cycle charge capacity of 474.88 mAh g−1 and 218.91 mAh g−1, respectively. The synergistic effect of the composite electrode leads to higher capacity and improved coulombic efficiency compared to the neat WS2 and neat SiOC materials in these cells.more » « less
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1more » « less
-
Abstract Transition metal dichalcogenides (TMDs) are a class of 2D materials demonstrating promising properties, such as high capacities and cycling stabilities, making them strong candidates to replace graphitic anodes in lithium-ion batteries. However, certain TMDs, for instance, MoS2, undergo a phase transformation from 2H to 1T during intercalation that can affect the mobility of the intercalating ions, the anode voltage, and the reversible capacity. In contrast, select TMDs, for instance, NbS2and VS2, resist this type of phase transformation during Li-ion intercalation. This manuscript uses density functional theory simulations to investigate the phase transformation of TMD heterostructures during Li-, Na-, and K-ion intercalation. The simulations suggest that while stacking MoS2layers with NbS2layers is unable to limit this 2H → 1T transformation in MoS2during Li-ion intercalation, the interfaces effectively stabilize the 2H phase of MoS2during Na- and K-ion intercalation. However, stacking MoS2layers with VS2is able to suppress the 2H → 1T transformation of MoS2during the intercalation of Li, Na, and K-ions. The creation of TMD heterostructures by stacking MoS2with layers of non-transforming TMDs also renders theoretical capacities and electrical conductivities that are higher than that of bulk MoS2.
-
Abstract The superior properties, such as large interlayer spacing and the ability to host large alkali-metal ions, of two-dimensional (2D) materials based on transition metal di-chalcogenides (TMDs) enable next-generation battery development beyond lithium-ion rechargeable batteries. In addition, compelling but rarely inspected TMD alloys provide additional opportunities to tailor bandgap and enhance thermodynamic stability. This study explores the sodium-ion (Na-ion) and potassium-ion (K-ion) storage behavior of cation-substituted molybdenum tungsten diselenide (MoWSe2), a TMD alloy. This research also investigates upper potential suspension to overcome obstacles commonly associated with TMD materials, such as capacity fading at high current rates, prolonged cycling conditions, and voltage polarization during conversion reaction. The voltage cut-off was restricted to 1.5 V, 2.0 V, and 2.5 V to realize the material’s Na+and K+ion storage behavior. Three-dimensional (3D) surface plots of differential capacity analysis up to prolonged cycles revealed the convenience of voltage suspension as a viable method for structural preservation. Moreover, the cells with higher potential cut-off values conveyed improved cycling stability, higher and stable coulombic efficiency for Na+and K+ion half-cells, and increased capacity retention for Na+ion half-cells, respectively, with half-cells cycled at higher voltage ranges.
-
Hydrated vanadates are promising layered cathodes for aqueous zinc-ion batteries owing to their specific capacity as high as 400 mA h g −1 ; however, the structural instability causes serious cycling degradation through repeated intercalation/deintercalation reactions. This study reveals the chemically inserted Mn( ii ) cations act as structural pillars, expand the interplanar spacing, connect the adjacent layers and partially reduce pentavalent vanadium cations to tetravalent. The expanded interplanar spacing to 12.9 Å reduces electrostatic interactions, and transition metal cations collectively promote and catalyze fast and more zinc ion intercalation at higher discharge current densities with much enhanced reversibility and cycling stability. Manganese expanded hydrated vanadate (MnVO) delivers a specific capacity of 415 mA h g −1 at a current density of 50 mA g −1 and 260 mA h g −1 at 4 A g −1 with a capacity retention of 92% over 2000 cycles. The energy efficiency increases from 41% for hydrated vanadium pentoxide (VOH) to 70% for MnVO at 4 A g −1 and the open circuit voltage remains at 85% of the cutoff voltage in the MnVO battery on the shelf after 50 days. Expanded hydrated vanadate with other transition metal cations for high-performance aqueous zinc-ion batteries is also obtained, suggesting it is a general strategy for exploiting high-performance cathodes for multi-valent ion batteries.more » « less