skip to main content


Title: Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing

Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.

 
more » « less
NSF-PAR ID:
10369213
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Biomedical Optics Express
Volume:
13
Issue:
5
ISSN:
2156-7085
Page Range / eLocation ID:
Article No. 2695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding and measuring parameters responsible for the pathogenesis of sepsis-induced AKI (SI-AKI) is critical in developing therapies. Blood flow to the kidney is heterogeneous, partly due to the existence of dynamic networks of capillaries in various regions, responding differentially to oxygen demand in cortex versus medulla. High energy demand regions, especially the outer medulla, are susceptible to hypoxia and subject to damage during SI-AKI. Proximal tubule epithelial cells in the cortex and the outer medulla can also undergo metabolic reprogramming during SI-AKI to maintain basal physiological status and to avoid potential damage. Current data on the assessment of renal hemodynamics and oxygen metabolism during sepsis is limited. Preclinical and clinical studies show changes in renal hemodynamics associated with SI-AKI, and in clinical settings, interventions to manage renal hemodynamics seem to help improve disease outcomes in some cases. Lack of proper tools to assess temporospatial changes in peritubular blood flow and tissue oxygen metabolism is a barrier to our ability to understand microcirculatory dynamics and oxygen consumption and their role in the pathogenesis of SI-AKI. Current tools to assess renal oxygenation are limited in their usability as these cannot perform continuous simultaneous measurement of renal hemodynamics and oxygen metabolism. Multi-parametric photo-acoustic microscopy (PAM) is a new tool that can measure real-time changes in microhemodynamics and oxygen metabolism. Use of multi-parametric PAM in combination with advanced intravital imaging techniques has the potential to understand the contribution of microhemodynamic and tissue oxygenation alterations to SI-AKI. 
    more » « less
  2. Abstract

    The rigours of the daily lives of insects sometimes lead to minor injuries and wounds, which must be healed to avoid entry of pathogens and to resume normal function. Such healing requires energy, which must be diverted from other bodily reserves. What happens if energy reserves are already low, as would occur in individuals coping with internal parasites? This question is addressed in the presemt study, using horned passalus beetles (Odontotaenius disjunctus) and their naturally‐occurring nematodeChondronema passali. Oxygen consumption rates are tested at rest, as well as after an experimental wound is applied, to evaluate energy requirements of wound‐healing in parasitized and nonparasitized hosts. Furthermore, wound‐healing rates are visually tracked with a numerical scoring system to directly measure the cost of parasitism on healing. At rest, parasitized beetles show no elevation in respiration (oxygen consumption). After wounding, the oxygen consumption of parasitized beetles is 10% higher than that in nonparasitized beetles. Beetles with moderate‐ to heavy worm burdens have slower healing than those with few or no nematodes. These results show that this parasite carries little cost to the host during day‐to‐day activities, whereas, during times of immediate energy demand, there is a cost; hosts require more energy to repair wounds, and the wounds take longer to close. This conclusion leads to the question of whether this parasite is truly benign, and how many other apparently benign parasites, in insects or other animals, have similar ‘hidden’ effects.

     
    more » « less
  3. Human mesenchymal stem cells (hMSCs) are instrumental in the wound healing process. They migrate to wounds from their native niche in response to chemical signals released during the inflammatory phase of healing. At the wound, hMSCs downregulate inflammation and regulate tissue regeneration. Delivering additional hMSCs to wounds using cell-laden implantable hydrogels has the potential to improve healing outcomes and restart healing in chronic wounds. For these materials to be effective, cells must migrate from the scaffold into the native tissue. This requires cells to traverse a step-change in material properties at the implant-tissue interface. Migration of cells in material with highly varying properties is not well characterized. We measure 3D encapsulated hMSC migration and remodeling in a well-characterized hydrogel with a step-change in stiffness. This cell-degradable hydrogel is composed of 4-arm poly(ethylene glycol)-norbornene cross-linked with an enzymatically-degradable peptide. The scaffold is made with two halves of different stiffnesses separated by an interface where stiffness changes rapidly. We characterize changes in structure and rheology of the pericellular region using multiple particle tracking microrheology (MPT). MPT measures Brownian motion of embedded particles and relates it to material rheology. We measure more remodeling in the soft region of the hydrogel than the stiff region on day 1 post-encapsulation and similar remodeling everywhere on day 6. In the interface region, we measure hMSC-mediated remodeling along the interface and migration towards the stiff side of the scaffold. These results can improve materials designed for cell delivery from implants to a wound to enhance healing. 
    more » « less
  4. Multi-parametric photoacoustic microscopy (PAM) has emerged as a promising new technique for high-resolution quantification of hemodynamics and oxygen metabolism in the mouse brain. In this work, we have extended the scope of multi-parametric PAM to longitudinal, cortex-wide, awake-brain imaging with the use of a long-lifetime (24 weeks), wide-field (5 × 7 mm 2 ), light-weight (2 g), dual-transparency ( i.e., light and ultrasound) cranial window. Cerebrovascular responses to the window installation were examined in vivo, showing a complete recovery in 18 days. In the 22-week monitoring after the recovery, no dura thickening, skull regrowth, or changes in cerebrovascular structure and function were observed. The promise of this technique was demonstrated by monitoring vascular and metabolic responses of the awake mouse brain to ischemic stroke throughout the acute, subacute, and chronic stages. Side-by-side comparison of the responses in the ipsilateral (injury) and contralateral (control) cortices shows that despite an early recovery of cerebral blood flow and an increase in microvessel density, a long-lasting deficit in cerebral oxygen metabolism was observed throughout the chronic stage in the injured cortex, part of which proceeded to infarction. This longitudinal, functional-metabolic imaging technique opens new opportunities to study the chronic progression and therapeutic responses of neurovascular diseases. 
    more » « less
  5. Abstract

    Chronic wounds are one of the most devastating complications of diabetes and are the leading cause of nontraumatic limb amputation. Despite the progress in identifying factors and promising in vitro results for the treatment of chronic wounds, their clinical translation is limited. Given the range of disruptive processes necessary for wound healing, different pharmacological agents are needed at different stages of tissue regeneration. This requires the development of wearable devices that can deliver agents to critical layers of the wound bed in a minimally invasive fashion. Here, for the first time, a programmable platform is engineered that is capable of actively delivering a variety of drugs with independent temporal profiles through miniaturized needles into deeper layers of the wound bed. The delivery of vascular endothelial growth factor (VEGF) through the miniaturized needle arrays demonstrates that, in addition to the selection of suitable therapeutics, the delivery method and their spatial distribution within the wound bed is equally important. Administration of VEGF to chronic dermal wounds of diabetic mice using the programmable platform shows a significant increase in wound closure, re‐epithelialization, angiogenesis, and hair growth when compared to standard topical delivery of therapeutics.

     
    more » « less