skip to main content


Title: An index for measuring functional extension and evenness in trait space
Abstract

Most existing functional diversity indices focus on a single facet of functional diversity. Although these indices are useful for quantifying specific aspects of functional diversity, they often present some conceptual or practical limitations in estimating functional diversity. Here, we present a new functional extension and evenness (FEE) index that encompasses two important aspects of functional diversity. This new index is based on the straightforward notion that a community has high diversity when its species are distant from each other in trait space. The index quantifies functional diversity by evaluating the overall extension of species traits and the interspecific differences of a species assemblage in trait space. The concept of minimum spanning tree (MST) of points was adopted to obtain the essential distribution properties for a species assembly in trait space. We combined the total length of MST branches (extension) and the variation of branch lengths (evenness) into a raw FEE0metric and then translated FEE0to a species richness‐independent FEE index using a null model approach. We assessed the properties of FEE and used multiple approaches to evaluate its performance. The results show that the FEE index performs well in quantifying functional diversity and presents the following desired properties: (a) It allows a fair comparison of functional diversity across different species richness levels; (b) it preserves the essence of single‐facet indices while overcoming some of their limitations; (c) it standardizes comparisons among communities by taking into consideration the trait space of the shared species pool; and (d) it has the potential to distinguish among different community assembly processes. With these attributes, we suggest that the FEE index is a promising metric to inform biodiversity conservation policy and management, especially in applications at large spatial and/or temporal scales.

 
more » « less
NSF-PAR ID:
10369227
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
12
ISSN:
2045-7758
Page Range / eLocation ID:
p. 7461-7473
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems. 
    more » « less
  2. Abstract

    The effective number of species (ENS) has been proposed as a robust measure of species diversity that overcomes several limitations in terms of both diversity indices and species richness (SR). However, it is not yet clear ifENSimproves interpretation and comparison of biodiversity monitoring data, and ultimately resource management decisions.

    We used simulations of five stream macroinvertebrate assemblages and spatially extensive field data of stream fishes and mussels to show (a) how differentENSformulations respond to stress and (b) how diversity–environment relationships change with values ofq, which weightENSmeasures by species abundances.

    Values ofENSderived from whole simulated assemblages with all species weighted equally (true SR) steadily decreased as stress increased, andENS‐stress relationships became weaker and more different among assemblages with increased weighting.

    The amount of variation inENSacross the fish and mussel assemblages that was associated with environmental gradients decreased with increasingq.

    Synthesis and applications. Species diversity is valued by many human societies, which often have policies designed to protect and restore it. Natural resources managers and policy makers may use species richness and diversity indices to describe the status of ecological communities. However, these traditional diversity measures are known subject to limitations that hinder their interpretation and comparability. The effective number of species (ENS) was proposed to overcome the limitations. Unfortunately, our analyses show thatENSdoes not improve interpretability of how species diversity responds to either stress or natural environmental gradients. Moreover, incorporating the relative abundance of individuals in different species (evenness) into diversity measures as implemented inENScan actually weaken detection of diversity responses. Natural resources managers and policy makers therefore need to be cautious when interpreting diversity measures, includingENS, whose values are jointly influenced by richness and evenness. We suggest that both researchers and practitioners measure and report three aspects of diversity (species richness, evenness, and composition) separately when assessing and monitoring the diversity of ecological communities.

     
    more » « less
  3. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less
  4. Abstract

    In an era of anthropogenically altered disturbance regimes and increased nutrient loads, understanding how communities respond to these perturbations is essential for successful habitat restoration. Disturbance and resource supply can affect community diversity by altering community assembly processes, such as recruitment, mortality or competitive inequalities. The mechanisms behind community responses to these drivers will differentially affect multiple facets of diversity.

    Here we examine how factorial manipulations of disturbance (raking to remove above‐ground vegetation) and nitrogen supply affect taxonomic and phylogenetic diversity of predominantly annual California grassland communities spanning a 500‐km latitudinal and twofold rainfall gradient. The disturbance caused density‐independent biomass removal and increased access to resources such as space and light, thus mimicking demographic effects of disturbance as considered in ecological models and broadly applicable to empirical systems. We used paired metrics of richness, evenness and community composition to compare evidence from taxonomy and phylogeny.

    Disturbance increased species and phylogenetic diversity (richness and evenness metrics). However, nitrogen addition interacted with disturbance to reduce species richness and phylogenetic diversity. Undisturbed communities were more strongly clustered phylogenetically, but disturbance eroded this clustering such that communities became more random (i.e. indistinguishable from a null model of assembly). Species composition differed between disturbed and undisturbed communities, and many species were observed in only one community type. Disturbance interacted with nitrogen supply to alter phylogenetic composition of communities, and recently disturbed communities were more spatially variable in phylogenetic composition than undisturbed communities. Phylogenetic composition of communities also differed among nitrogen treatments.

    Synthesis.Our results suggest that disturbing these grassland communities by removing above‐ground vegetation increased community diversity by increasing recruitment. Seed addition following this type of disturbance is thus likely to be an effective restoration technique. However, we have shown that disturbance combined with nitrogen enrichment reduces community diversity. The mechanism for this enrichment effect does not appear to be linked to increased productivity leading to light limitation. This work suggests restoration efforts employing biomass removal must take nutrient availability into account to maximize local community diversity.

     
    more » « less
  5. Functional traits are characteristics of an organism that represent how it interacts with its environment and can influence the structure and function of ecosystems. Ecological stoichiometry provides a framework to understand ecosystem structure and function by modeling the coupled flow of elements (e.g. carbon [C], nitrogen [N], phosphorus [P]) between consumers and their environment. Animals tend to be homeostatic in their nutrient requirements and preferentially sequester the element in shortest supply relative to demand, and release relatively more of the element in excess. Tissue stoichiometry is an important functional trait that allows for predictions among the elemental composition of animals, their diet, and their waste products, with important effects on the cycling and availability of nutrients in ecosystems. Here we examined the tissue stoichiometric niches (C:N:P) and nutrient recycling stoichiometries (N:P) of several filter‐feeding freshwater mussels in the subfamily Ambleminae. Despite occupying the same functional‐feeding group and being restricted to a single subfamily‐level radiation, we found that species occupied distinct stoichiometric niches and that these niches varied, in part, as a function of their evolutionary history. The relationship between phylogenetic divergence and functional divergence suggests that evolutionary processes may be shaping niche complementarity and resource partitioning. Tissue and excretion stoichiometry were negatively correlated as predicted by stoichiometric theory. When scaled to the community, higher species richness and phylogenetic diversity resulted in greater functional evenness and reduced functional dispersion. Filter‐feeding bivalves are an ecologically important guild in freshwater ecosystems globally, and our study provides a more nuanced view of the stoichiometric niches and ecological functions performed by this phylogenetically and ecologically diverse assemblage. 
    more » « less