skip to main content


Title: Slip slidin’ away: Bristle‐driven gliding by Tetradesmus deserticola (Chlorophyta) in microfluidic chambers

Microalgae within the Scenedesmaceae are often distinguished by spines, bristles, and other wall characteristics. We examined the dynamic production and chemical nature of bristles extruded from the poles ofTetradesmus deserticolapreviously isolated from microbiotic crust. Rapidly growing cells in a liquid growth medium were established in polydimethylsiloxane microfluidic chambers specially designed to maintain aerobic conditions over time within a chamber 6–12 μm deep. This geometry enabled in‐focus imaging of single cells over long periods. Differential interference contrast (DIC) imaging revealed that after multiple fission of mother cells, the newly released, lemon‐shaped daughter cells began extruding bristles from each pole. In some instances, the bristles became stuck to either the glass floor or polydimethylsiloxane (PDMS) walls of the chamber, and the force by which the new bristle was extruded was sufficient to propel the cells across the field of view at ~1.2 μm · h−1. Confocal fluorescence and DIC imaging of cells stained with pontamine fast scarlet and calcofluor, and treated with proteinase K, suggested that bristles are proteinaceous and may also host carbohydrate modifications. The polar bristles extruded by this desert‐derivedT. deserticolamay simply be relics of bristles produced by an aquatic ancestor for flotation or predator deterrence. But, their tendency to attach to glass (silicate) and/or PDMS surfaces suggests a potential role in tethering cells in place or binding soil particles.T. deserticolais closely related toT. obliquus, which is of interest for biofuels development; extruded bristles inT. deserticolamay offer tethers for industrial use of these stress‐tolerant algae.

 
more » « less
NSF-PAR ID:
10369229
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Phycology
Volume:
58
Issue:
4
ISSN:
0022-3646
Page Range / eLocation ID:
p. 626-630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm atλ = 680 nm, 4.1 dB/cm atλ = 633 nm, 4.9 dB/cm atλ = 532 nm, 6.1 dB/cm atλ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity.

     
    more » « less
  2. Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers ( e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily cast from parylene-coated 3D printed molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community. 
    more » « less
  3. null (Ed.)
    Controlled trapping of cells and microorganisms using substrate acoustic waves (SAWs; conventionally termed surface acoustic waves) has proven useful in numerous biological and biomedical applications owing to the label- and contact-free nature of acoustic confinement. However, excessive heating due to vibration damping and other system losses potentially compromises the biocompatibility of the SAW technique. Herein, we investigate the thermal biocompatibility of polydimethylsiloxane (PDMS)-based SAW and glass-based SAW [that supports a bulk acoustic wave (BAW) in the fluid domain] devices operating at different frequencies and applied voltages. First, we use infrared thermography to produce heat maps of regions of interest (ROI) within the aperture of the SAW transducers for PDMS- and glass-based devices. Motile Chlamydomonas reinhardtii algae cells are then used to test the trapping performance and biocompatibility of these devices. At low input power, the PDMS-based SAW system cannot generate a large enough acoustic trapping force to hold swimming C. reinhardtii cells. At high input power, the temperature of this device rises rapidly, damaging (and possibly killing) the cells. The glass-based SAW/BAW hybrid system, on the other hand, can not only trap swimming C. reinhardtii at low input power, but also exhibits better thermal biocompatibility than the PDMS-based SAW system at high input power. Thus, a glass-based SAW/BAW device creates strong acoustic trapping forces in a biocompatible environment, providing a new solution to safely trap active microswimmers for research involving motile cells and microorganisms. 
    more » « less
  4. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  5. ABSTRACT

    The isothermal structural relaxation (densification) of a family of glassy polynorbornene films with high glass transition temperatures (Tg > 613 K) is assessed via spectroscopic ellipsometry. Three polymers were examined: poly(butylnorbornene) (BuNB), poly(hydroxyhexafluoroisopropyl norbornene) (HFANB), and their random copolymer, BuNB‐r‐HFANB. The effective aging rate,β(T), of thick (∼1.2 μm) spun cast films of BuNB‐r‐HFANB is approximately 10−3over a wide temperature window (0.49 < T/Tg < 0.68). At higher temperatures, these polymers undergo reactions that more dramatically decrease the film thickness, which prohibits erasing the process history by annealing aboveTg. The aging rate for thick BuNB‐r‐HFANB films is independent of the casting solvent, which infers that rapid aging is not associated with residual solvent.β(at 373 K) decreases for films thinner than ∼500 nm. However, the isothermal structural relaxation of thin films of BuNB‐r‐HFANB exhibits nonmonotonic temporal evolution in thickness for films thinner than 115 nm film. The thickness after 18 h of aging at 373 K can be greater than the initial thickness. The rapid aging of these polynorbornene films is attributed to the unusual rapid local dynamics of this class of polymers and demonstrates the potential for unexpected structural relaxations in membranes and thin films of high‐Tgpolymers that could impact their performance. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2018,56, 53–61

     
    more » « less