Social hierarchies emerge when animals compete for access to resources such as food, mates or physical space. Wild and laboratory male mice have been shown to develop linear hierarchies, however, less is known regarding whether female mice have sufficient intrasexual competition to establish significant social dominance relationships. In this study, we examined whether groups of outbred CD-1 virgin female mice housed in a large vivaria formed social hierarchies. We show that females use fighting, chasing and mounting behaviors to rapidly establish highly directionally consistent social relationships. Notably, these female hierarchies are less linear, steep and despotic compared to male hierarchies. Female estrus state was not found to have a significant effect on aggressive behavior, though dominant females had elongated estrus cycles (due to increased time in estrus) compared to subordinate females. Plasma estradiol levels were equivalent between dominant and subordinate females. Subordinate females had significantly higher levels of basal corticosterone compared to dominant females. Analyses of gene expression in the ventromedial hypothalamus indicated that subordinate females have elevated ERα, ERβ and OTR mRNA compared to dominant females. This study provides a methodological framework for the study of the neuroendocrine basis of female social aggression and dominance in laboratory mice.
Female competitive behaviors during courtship can have substantial fitness consequences, yet we know little about the physiological and social mechanisms underlying these behaviors—particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predicts female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females’ aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.
more » « less- PAR ID:
- 10369237
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 62
- Issue:
- 1
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 9-20
- Size(s):
- p. 9-20
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Glucocorticoid-Mediated Changes in Male Green Treefrog Vocalizations Alter Attractiveness to FemalesSynopsis Adrenal glucocorticoids (GCs) are increasingly recognized as important modulators of male courtship signals, suggesting that circulating levels of these steroids can play a central role in sexual selection. However, few studies have examined whether GC-mediated effects on male sexual signals actually impact mate choice by females. Here, we examine how corticosterone (CORT)-mediated changes in the vocalizations of male green treefrogs, Dryophytes cinereus, influence attractiveness to females. In this species, agonistic acoustic signaling between rival males competing for mates increases circulating CORT levels in contest losers. Acute elevations in CORT, in turn, decrease the duration of male advertisement calls and increase the latency between successive calls, resulting in a net reduction in vocal effort (the amount of signaling per unit time) that occurs independently of changes in circulating androgens. Based on known preferences for acoustic features in D. cinereus, and other anuran species, the direction of CORT-mediated effects on temporal call characteristics is expected to compromise attractiveness to females, but whether they are of sufficient magnitude to impact female mate choice decisions is unclear. To examine whether CORT-mediated effects on male advertisement calls reduce attractiveness to females, we broadcast vocalizations in dual speaker playback experiments approximating the mean and 1 SD above and below the mean call duration and vocal effort values (the two primary vocal features impacted by elevated CORT) of males with low and high CORT levels. Results revealed strong preferences by females for the calls characteristic of males with low CORT in tests using the approximate mean and 1 SD above the mean call duration and vocal effort values, but females did not show a preference for calls of males with low CORT in trials using call values approximating 1 SD below the mean. Overall, females preferred males with signal traits predictive of low CORT, however this effect was nonlinear with attenuated preferences when signal alternatives differed only marginally indicating a possible thresholding effect. Specifically, females appeared to discriminate between males with low versus high CORT based primarily on differences in call rates associated with CORT-mediated changes in call duration and vocal effort. Our results highlight that changes in circulating CORT during male–male vocal interactions can decrease attractiveness to females, suggesting that circulating levels of CORT can play a critical role in both intra- and intersexual selection.more » « less
-
Abstract Female intrasexual competition can be intense in cooperatively breeding species, with some dominant breeders (matriarchs) limiting reproduction in subordinates via aggression, eviction or infanticide. In males, such tendencies bidirectionally link to testosterone, but in females, there has been little systematic investigation of androgen-mediated behaviour within and across generations. In 22 clans of wild meerkats (
Suricata suricatta ), we show that matriarchs 1) express peak androgen concentrations during late gestation, 2) when displaying peak feeding competition, dominance behaviour, and evictions, and 3) relative to subordinates, produce offspring that are more aggressive in early development. Late-gestation antiandrogen treatment of matriarchs 4) specifically reduces dominance behaviour, is associated with infrequent evictions, decreases social centrality within the clan, 5) increases aggression in cohabiting subordinate dams, and 6) reduces offspring aggression. These effects implicate androgen-mediated aggression in the operation of female sexual selection, and intergenerational transmission of masculinised phenotypes in the evolution of meerkat cooperative breeding. -
Introduction Dominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males. Methods Here, we examine the determinants of female dominance across ontogenetic development in spotted hyenas ( Crocuta crocuta ) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses. Results Among adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females. Discussion Overall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all.more » « less
-
Abstract Exposure to multiple environmental stressors is a common occurrence that can affect organisms in predictable or unpredictable ways. Hypoxia and turbidity in aquatic environments are 2 stressors that can affect reproductive behaviors by altering energy availability and the visual environment, respectively. Here we examine the relative effects of population and the rearing environment (oxygen concentration and turbidity) on reproductive behaviors. We reared cichlid fish (the Egyptian mouthbrooder, Pseudocrenilabrus multicolor) from 2 populations (a swamp and river) until sexual maturity, in a full factorial design (hypoxic/normoxic × clear/turbid) and then quantified male competitive and courtship behaviors and female preference under their respective rearing conditions. Overall, we found that the rearing environment was more important than population for determining behavior, indicating there were few heritable differences in reproductive behavior between the 2 populations. Unexpectedly, males in the hypoxic rearing treatment performed more competitive and courtship behaviors. Under turbid conditions, males performed fewer competitive and courtship behaviors. We predicted that females would prefer males from their own population. However, under the hypoxic and turbid combination females from both populations preferred males from the other population. Our results suggest that reproductive behaviors are affected by interactions among male traits, female preferences, and environmental conditions.