skip to main content

Title: Towards understanding the magnetic properties of the breathing pyrochlore compound Ba3Yb2Zn5O11through single-crystal studies

Ba3Yb2Zn5O11is exceptional among breathing pyrochlore compounds for being in the nearly-decoupled limit where inter-tetrahedron interactions are weak, hosting isolated clusters or molecular magnet-like tetrahedra of magnetic ytterbium (Yb3+) ions. In this work, we present the study carried out on single-crystal samples of the breathing pyrochlore Ba3Yb2Zn5O11, using a variety of magnetometry and neutron scattering techniques along with theoretical modeling. We employ inelastic neutron scattering to investigate the magnetic dynamics as a function of applied field (with respect to both magnitude and direction) down to a temperature of 70 mK, where inelastic scattering reveals dispersionless bands of excitations as found in earlier powder sample studies, in good agreement with a single-tetrahedron model. However, diffuse neutron scattering at zero field and dc-susceptibility at finite field exhibit features suggesting the presence of excitations at low-energy that are not captured by the single tetrahedron model. Analysis of the local structure down to 2 K via pair distribution function analysis finds no evidence of structural disorder. We conclude that effects beyond the single tetrahedron model are important in describing the low-energy, low-temperature physics of Ba3Yb2Zn5O11, but their nature remains undetermined.

; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
npj Quantum Materials
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. We use neutron scattering to show that ferromagnetism and antiferromagnetism coexist in the low T state of the pyrochlore quantum magnetYb2Ti2O7. While magnetic Bragg peaks evidence long-range static ferromagnetic order, inelastic scattering shows that short-range correlated antiferromagnetism is also present. Small-angle neutron scattering provides direct evidence for mesoscale magnetic structure that we associate with metastable antiferromagnetism. Classical Monte Carlo simulations based on exchange interactions inferred from111-oriented high-field spin wave measurements confirm that antiferromagnetism is metastable within the otherwise ferromagnetic ground state. The apparent lack of coherent spin wave excitations and strong sensitivity to quenched disorder characterizingYb2Ti2O7is a consequence of this multiphase magnetism.

  2. Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24 μ B /Co; (iii) a series of spin state transitions for both H ∥ ab -plane and H ∥ c -axis. For H ∥ ab -plane, the magnetization plateau feature related to the up–up–down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba 3 CoSb 2 O 9 , which demonstrates that the non-magnetic ion site disorder (the Sr doping) playsmore »a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.« less
  3. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1Dmore »chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

    « less
  4. Abstract

    This study reports atomic-scale characterization of structural defects in Yb2Ti2O7,a pyrochlore oxide whose subtle magnetic interactions is prone to small perturbations. Due to discrepancies in the reported magnetic ground states, it has become a pressing issue to determine the nature of defects in this system. In the present study, we use atomic resolution scanning transmission electron microscopy techniques to identify the type of defects in the ytterbium titanate single crystals grown by the conventional optical floating zone (FZ) method. In addition to the known point defects of substitution Yb on Ti B-sites, extended defects such as dissociated superdislocations and anti-phase boundaries were discovered for the first time in this material. Such defects were prevalently observed in the FZ grown single crystals (of a darker color), in contrast to the stoichiometric white polycrystalline powders or high quality colorless single crystals grown by the traveling solvent floating zone technique. The lattice strains from these extended defects result in distortions of Yb-tetrahedron. A change of Ti valance was not detected at the defects. Our findings provide new insights into understanding the nature of defects that are of great importance for the physical property studies of geometrically frustrated compounds. Furthermore, this work shedsmore »light on the complicated core structure of superdislocations that have large Burgers vectors in oxides with complex unit cells.

    « less
  5. Abstract

    Quantum-mechanical fluctuations between competing phases induce exotic collective excitations that exhibit anomalous behavior in transport and thermodynamic properties, and are often intimately linked to the appearance of unconventional Cooper pairing. High-temperature superconductivity, however, makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe1/3Co1/3Ni1/3)2As2, indicative of quantum criticality at zero temperature and applied magnetic field. Beyond a linear-in-temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find a scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system unhindered by a pairing instability.