skip to main content

Title: Approximation Algorithms for Replenishment Problems with Fixed Turnover Times
Abstract

We introduce and study a class of optimization problems we call replenishment problems with fixed turnover times: a very natural model that has received little attention in the literature. Clients with capacity for storing a certain commodity are located at various places; at each client the commodity depletes within a certain time, the turnover time, which is constant but can vary between locations. Clients should never run empty. The natural feature that makes this problem interesting is that we may schedule a replenishment (well) before a client becomes empty, but then the next replenishment will be due earlier also. This added workload needs to be balanced against the cost of routing vehicles to do the replenishments. In this paper, we focus on the aspect of minimizing routing costs. However, the framework of recurring tasks, in which the next job of a task must be done within a fixed amount of time after the previous one is much more general and gives an adequate model for many practical situations. Note that our problem has an infinite time horizon. However, it can be fully characterized by a compact input, containing only the location of each client and a turnover time. This more » makes determining its computational complexity highly challenging and indeed it remains essentially unresolved. We study the problem for two objectives:minavg  minimizes the average tour cost andminmax  minimizes the maximum tour cost over all days. Forminmax  we derive a logarithmic factor approximation for the problem on general metrics and a 6-approximation for the problem on trees, for which we have a proof of NP-hardness. Forminavg  we present a logarithmic factor approximation on general metrics, a 2-approximation for trees, and a pseudopolynomial time algorithm for the line. Many intriguing problems remain open.

« less
Authors:
; ; ; ; ;
Publication Date:
NSF-PAR ID:
10369259
Journal Name:
Algorithmica
Volume:
84
Issue:
9
Page Range or eLocation-ID:
p. 2597-2621
ISSN:
0178-4617
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, the client-to-client distances up to a small additive error proportional to client distances to the depot.
  2. Vehicle routing problems are a broad class of combinatorial optimization problems that can be formulated as the problem of finding a tour in a weighted graph that optimizes some function of the visited vertices. For instance, a canonical and extensively studied vehicle routing problem is the orienteering problem where the goal is to find a tour that maximizes the number of vertices visited by a given deadline. In this paper, we consider the computational tractability of a well-known generalization of the orienteering problem called the Orient-MTW problem. The input to Orient-MTW consists of a weighted graph G(V, E) where for each vertex v ∊ V we are given a set of time instants Tv ⊆ [T], and a source vertex s. A tour starting at s is said to visit a vertex v if it transits through v at any time in the set Tv. The goal is to find a tour starting at the source vertex that maximizes the number of vertices visited. It is known that this problem admits a quasi-polynomial time O(log OPT)-approximation ratio where OPT is the optimal solution value but until now no hardness better than an APX-hardness was known for this problem. Our mainmore »result is an -hardness for this problem that holds even when the underlying graph G is an undirected tree. This is the first super-constant hardness result for the Orient-MTW problem. The starting point for our result is the hardness of the SetCover problem which is known to hold on instances with a special structure. We exploit this special structure of the hard SetCover instances to first obtain a new proof of the APX-hardness result for Orient-MTW that holds even on trees of depth 2. We then recursively amplify this constant factor hardness to an -hardness, while keeping the resulting topology to be a tree. Our amplified hardness proof crucially utilizes a delicate concavity property which shows that in our encoding of SetCover instances as instances of the Orient-MTW problem, whenever the optimal cost for SetCover instance is large, any tour, no matter how it allocates its time across different sub-trees, can not visit too many vertices overall. We believe that this reduction template may also prove useful in showing hardness of other vehicle routing problems.« less
  3. Bansal, Nikhil and (Ed.)
    his paper presents universal algorithms for clustering problems, including the widely studied k-median, k-means, and k-center objectives. The input is a metric space containing all potential client locations. The algorithm must select k cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an (α, β)-approximation if for all subsets of clients C', it satisfies sol(C') ≤ α ⋅ opt(C') + β ⋅ mr, where opt(C') is the cost of the optimal solution for clients C' and mr is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of k-median, k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other 𝓁_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α, β)-approximation is NP-hard ifmore »α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering.« less
  4. We study a general stochastic ranking problem in which an algorithm needs to adaptively select a sequence of elements so as to “cover” a random scenario (drawn from a known distribution) at minimum expected cost. The coverage of each scenario is captured by an individual submodular function, in which the scenario is said to be covered when its function value goes above a given threshold. We obtain a logarithmic factor approximation algorithm for this adaptive ranking problem, which is the best possible (unless P = NP). This problem unifies and generalizes many previously studied problems with applications in search ranking and active learning. The approximation ratio of our algorithm either matches or improves the best result known in each of these special cases. Furthermore, we extend our results to an adaptive vehicle-routing problem, in which costs are determined by an underlying metric. This routing problem is a significant generalization of the previously studied adaptive traveling salesman and traveling repairman problems. Our approximation ratio nearly matches the best bound known for these special cases. Finally, we present experimental results for some applications of adaptive ranking.
  5. LaValle, Steve M. ; Lin, Ming ; Ojala, Timo ; Shell, Dylan ; Yu, Jingjin (Ed.)
    The line coverage problem is the task of servicing a given set of one-dimensional features in an environment. Its applications include the inspection of road networks, power lines, and oil and gas lines. The line coverage problem is a generalization of the standard arc routing problems, and is NP-hard in general. We address the single robot line coverage problem where the service and deadhead costs are distinct and asymmetric. We model the problem as an optimization problem that minimizes the total cost of travel on a given graph. We present approximation algorithms to obtain bounded solutions efficiently, using the minimum cost flow problem. We build the main algorithm in stages by considering three simpler subproblems. The subproblems are based on the structure of the required graph, i.e., the graph induced by the features that require servicing. We fi rst present an optimal algorithm for the case of Eulerian graphs with only required edges. Next we consider general graphs, not necessarily Eulerian, with only required edges and present a 2-approximation algorithm. Finally, we consider the general case with both required and non-required edges. The approximation algorithm is dependent on the Asymmetric Traveling Salesperson Problem (ATSP), and is bounded by alpha(C) +more »2, where alpha(C) is the approximation factor of the ATSP algorithm with C connected components. Our upper bound is also an improvement over the existing results for the asymmetric rural postman problem.« less