skip to main content


Title: Enhancement of CRISPR/Cas12a trans -cleavage activity using hairpin DNA reporters
Abstract

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.

 
more » « less
Award ID(s):
2144823
NSF-PAR ID:
10369269
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
14
ISSN:
0305-1048
Page Range / eLocation ID:
p. 8377-8391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    CRISPR‐based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR‐Cas12a‐based sensing platform to detect ssDNA targets by sizing double‐stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massivetrans‐nuclease activity of Cas12a toward λ DNA is due to the presence of single‐stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes thetrans‐cleavage activity and helps achieve sub‐picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.

     
    more » « less
  2. Abstract

    CRISPR‐based biosensors often rely on colorimetric, fluorescent, or electrochemical signaling mechanism, which involves expensive reporters and/or sophisticated equipment. Here, we demonstrated a simple, inexpensive, nonoptical, and sensitive CRISPR‐Cas12a‐based sensing platform to detect ssDNA targets by sizing double‐stranded λ DNA as novel report molecules. In this platform, the size reduction of λ DNA was quantified by gel electrophoresis analysis. We hypothesize that the massivetrans‐nuclease activity of Cas12a toward λ DNA is due to the presence of single‐stranded looped structures along the λ DNA sequence. In addition, we observed a strong binding affinity between Cas12a and λ DNA, which further promotes thetrans‐cleavage activity and helps achieve sub‐picomolar detection sensitivity, ≈100 times more sensitive than the fluorescent counterpart. The concept of utilizing the physical size change of λ DNA unlocks the possibility of using a variety of dsDNA as CRISPR reporters.

     
    more » « less
  3. Abstract

    CRISPR-Cas12a can induce nonspecific trans-cleavage of dsDNA substrate, including long and stable λ DNA. However, the mechanism behind this is still largely undetermined. In this study, we observed that while trans-activated Cas12a didn’t cleave blunt-end dsDNA within a short reaction time, it could degrade dsDNA reporters with a short overhang. More interestingly, we discovered that the location of the overhang also affected the susceptibility of dsDNA substrate to trans-activated Cas12a. Cas12a trans-cleaved 3′ overhang dsDNA substrates at least 3 times faster than 5′ overhang substrates. We attributed this unique preference of overhang location to the directional trans-cleavage behavior of Cas12a, which may be governed by RuvC and Nuc domains. Utilizing this new finding, we designed a new hybrid DNA reporter as nonoptical substrate for the CRISPR-Cas12a detection platform, which sensitively detected ssDNA targets at sub picomolar level. This study not only unfolded new insight into the trans-cleavage behavior of Cas12a but also demonstrated a sensitive CRISPR-Cas12a assay by using a hybrid dsDNA reporter molecule.

     
    more » « less
  4. Cas12a is an RNA‐guided DNA endonuclease of the type V‐A CRISPR‐Cas system that has evolved convergently with the type II Cas9 protein. We previously showed that proline substitutions in the bridge helix (BH) impart target DNA cleavage selectivity inStreptococcus pyogenes(Spy) Cas9. Here, we examined a BH variant of Cas12a fromFrancisella novicida(FnoCas12aKD2P) to test mechanistic conservation. Our results show that for RNA‐guided DNA cleavage (cis‐activity), FnoCas12aKD2Paccumulates nicked products while cleaving supercoiled DNA substrates with mismatches, with certain mismatch positions being more detrimental for linearization. FnoCas12aKD2Palso possess reducedtrans‐single‐stranded DNA cleavage activity. These results implicate the BH in substrate selectivity in bothcis‐andtrans‐cleavages and show its conserved role in target discrimination among Cas nucleases.

     
    more » « less
  5. Abstract

    CRISPR-Cas12a is an RNA-guided, programmable genome editing enzyme found within bacterial adaptive immune pathways. Unlike CRISPR-Cas9, Cas12a uses only a single catalytic site to both cleave target double-stranded DNA (dsDNA) (cis-activity) and indiscriminately degrade single-stranded DNA (ssDNA) (trans-activity). To investigate how the relative potency of cis- versus trans-DNase activity affects Cas12a-mediated genome editing, we first used structure-guided engineering to generate variants of Lachnospiraceae bacterium Cas12a that selectively disrupt trans-activity. The resulting engineered mutant with the biggest differential between cis- and trans-DNase activity in vitro showed minimal genome editing activity in human cells, motivating a second set of experiments using directed evolution to generate additional mutants with robust genome editing activity. Notably, these engineered and evolved mutants had enhanced ability to induce homology-directed repair (HDR) editing by 2–18-fold compared to wild-type Cas12a when using HDR donors containing mismatches with crRNA at the PAM-distal region. Finally, a site-specific reversion mutation produced improved Cas12a (iCas12a) variants with superior genome editing efficiency at genomic sites that are difficult to edit using wild-type Cas12a. This strategy establishes a pipeline for creating improved genome editing tools by combining structural insights with randomization and selection. The available structures of other CRISPR-Cas enzymes will enable this strategy to be applied to improve the efficacy of other genome-editing proteins.

     
    more » « less