skip to main content

Title: Proteomic and Transcriptomic Analyses in the Slipper Snail Crepidula fornicata Uncover Shell Matrix Genes Expressed During Adult and Larval Biomineralization

The gastropod shell is a composite composed of minerals and shell matrix proteins (SMPs). SMPs have been identified by proteomics in many molluscs, but few have been studied in detail. Open questions include (1) what gene regulatory networks regulate SMP expression, (2) what roles individual SMPs play in biomineralization, and (3) how the complement of SMPs changes over development. These questions are best addressed in a species in which gene perturbation studies are available; one such species is the slipper snail, Crepidula fornicata. Here, SEM and pXRD analysis demonstrated that the adult shell of C. fornicata exhibits crossed lamellar microstructure and is composed of aragonite. Using high-throughput proteomics we identified 185 SMPs occluded within the adult shell. Over half of the proteins in the shell proteome have known biomineralization domains, while at least 10% have no homologs in public databases. Differential gene expression analysis identified 20 SMP genes that are up-regulated in the shell-producing mantle tissue. Over half of these 20 SMPs are expressed during development with two, CfSMP1 and CfSMP2, expressed exclusively in the shell gland. Together, the description of the shell microstructure and a list of SMPs now sets the stage for studying the consequences of SMP gene knockdowns in molluscs.

more » « less
Award ID(s):
1456837 1905982
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative Organismal Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Venkatesh, B (Ed.)
    Abstract Molluscs biomineralize structures that vary in composition, form, and function, prompting questions about the genetic mechanisms responsible for their production and the evolution of these mechanisms. Chitons (Mollusca, Polyplacophora) are a promising system for studies of biomineralization because they build a range of calcified structures including shell plates and spine- or scale-like sclerites. Chitons also harden the calcified teeth of their rasp-like radula with a coat of iron (as magnetite). Here we present the genome of the West Indian fuzzy chiton Acanthopleura granulata, the first from any aculiferan mollusc. The A. granulata genome contains homologs of many genes associated with biomineralization in conchiferan molluscs. We expected chitons to lack genes previously identified from pathways conchiferans use to make biominerals like calcite and nacre because chitons do not use these materials in their shells. Surprisingly, the A. granulata genome has homologs of many of these genes, suggesting that the ancestral mollusc may have had a more diverse biomineralization toolkit than expected. The A. granulata genome has features that may be specialized for iron biomineralization, including a higher proportion of genes regulated directly by iron than other molluscs. A. granulata also produces two isoforms of soma-like ferritin: one is regulated by iron and similar in sequence to the soma-like ferritins of other molluscs, and the other is constitutively translated and is not found in other molluscs. The A. granulata genome is a resource for future studies of molluscan evolution and biomineralization. 
    more » « less
  2. null (Ed.)
    While recent strides have been made in understanding the biological process by which stony corals calcify, much remains to be revealed, including the ubiquity across taxa of specific biomolecules involved. Several proteins associated with this process have been identified through proteomic profiling of the skeletal organic matrix (SOM) extracted from three scleractinian species. However, the evolutionary history of this putative “biomineralization toolkit,” including the appearance of these proteins’ throughout metazoan evolution, remains to be resolved. Here we used a phylogenetic approach to examine the evolution of the known scleractinians’ SOM proteins across the Metazoa. Our analysis reveals an evolutionary process dominated by the co-option of genes that originated before the cnidarian diversification. Each one of the three species appears to express a unique set of the more ancient genes, representing the independent co-option of SOM proteins, as well as a substantial proportion of proteins that evolved independently. In addition, in some instances, the different species expressed multiple orthologous proteins sharing the same evolutionary history. Furthermore, the non-random clustering of multiple SOM proteins within scleractinian-specific branches suggests the conservation of protein function between distinct species for what we posit is part of the scleractinian “core biomineralization toolkit.” This “core set” contains proteins that are likely fundamental to the scleractinian biomineralization mechanism. From this analysis, we infer that the scleractinians’ ability to calcify was achieved primarily through multiple lineage-specific protein expansions, which resulted in a new functional role that was not present in the parent gene. 
    more » « less
  3. Abstract

    Guidance cues act during development to guide growth cones to their proper targets in both the central and peripheral nervous systems. Experiments in many species indicate that guidance molecules also play important roles after development, though less is understood about their functions in the adult. The Semaphorin family of guidance cues, signaling through Plexin receptors, influences the development of both axons and dendrites in invertebrates. Semaphorin functions have been extensively explored inDrosophila melanogasterand some other Dipteran species, but little is known about their function in hemimetabolous insects. Here, we characterizesema1aandplexAin the cricketGryllus bimaculatus. In fact, we found two distinct predicted Sema1a proteins in this species, Sema1a.1 and Sema1a.2, which shared only 48% identity at the amino acid level. We include a phylogenetic analysis that predicted that many other insect species, both holometabolous and hemimetabolous, express two Sema1a proteins as well. Finally, we used in situ hybridization to show thatsema1a.1andsema1a.2expression patterns were spatially distinct in the embryo, and both roughly overlap withplexA. All three transcripts were also expressed in the adult brain, mainly in the mushroom bodies, thoughsema1a.2was expressed most robustly.sema1a.2was also expressed strongly in the adult thoracic ganglia whilesema1a.1was only weakly expressed andplexAwas undetectable.

    more » « less
  4. Abstract Background Calcareous outcrops, rocky areas composed of calcium carbonate (CaCO 3 ), often host a diverse, specialized, and threatened biomineralizing fauna. Despite the repeated evolution of physiological and morphological adaptations to colonize these mineral rich substrates, there is a lack of genomic resources for calcareous rock endemic species. This has hampered our ability to understand the genomic mechanisms underlying calcareous rock specialization and manage these threatened species. Results Here, we present a new draft genome assembly of the threatened limestone endemic land snail Oreohelix idahoensis and genome skim data for two other Oreohelix species. The O. idahoensis genome assembly (scaffold N50: 404.19 kb; 86.6% BUSCO genes) is the largest (~ 5.4 Gb) and most repetitive mollusc genome assembled to date (85.74% assembly size). The repetitive landscape was unusually dominated by an expansion of long terminal repeat (LTR) transposable elements (57.73% assembly size) which have shaped the evolution genome size, gene composition through retrotransposition of host genes, and ectopic recombination. Genome skims revealed repeat content is more than 2–3 fold higher in limestone endemic O. idahoensis compared to non-calcareous Oreohelix species. Gene family size analysis revealed stress and biomineralization genes have expanded significantly in the O. idahoensis genome . Conclusions Hundreds of threatened land snail species are endemic to calcareous rock regions but there are very few genomic resources available to guide their conservation or determine the genomic architecture underlying CaCO 3 resource specialization. Our study provides one of the first high quality draft genomes of a calcareous rock endemic land snail which will serve as a foundation for the conservation genomics of this threatened species and for other groups. The high proportion and activity of LTRs in the O. idahoensis genome is unprecedented in molluscan genomics and sheds new light how transposable element content can vary across molluscs. The genomic resources reported here will enable further studies of the genomic mechanisms underlying calcareous rock specialization and the evolution of transposable element content across molluscs. 
    more » « less
  5. Abstract

    Inducible prey defences occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co‐occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defences. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defences. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with upregulation of calcium transport proteins that could influence biomineralization. Inducible defences evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were downregulated by both oyster populations after exposure to drills, implying a trade‐off between biomineralization and immune function. Following drill exposure, oysters from the population that co‐occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform‐specific protein expression. This trend suggests that a stronger inducible defence response evolved in oysters that co‐occur with drills through modification of an existing mechanism.

    more » « less