skip to main content

Title: Dust masses for a large sample of core-collapse supernovae from optical emission line asymmetries: dust formation on 30-year time-scales
ABSTRACT

Modelling the red–blue asymmetries seen in the broad emission lines of core-collapse supernovae (CCSNe) is a powerful technique to quantify total dust mass formed in the ejecta at late times (>5 yr after outburst) when ejecta dust temperatures become too low to be detected by mid-infrared (IR) instruments. Following our success in using the Monte Carlo radiative transfer code damocles to measure the dust mass evolution in SN 1987A and other CCSNe, we present the most comprehensive sample of dust mass measurements yet made with damocles, for CCSNe aged between 4 and 60 yr after outburst. Our sample comprises multi-epoch late-time optical spectra taken with the Gemini/Gemini Multi-Object Spectrographs (GMOS) and Very Large Telescope (VLT) X-Shooter spectrographs, supplemented by archival spectra. For the 14 CCSNe that we have modelled, we confirm a dust mass growth with time that can be fit by a sigmoid curve that is found to saturate beyond an age of ∼30 yr, at a mass of 0.23$^{+0.17}_{-0.12}$ M⊙. For an expanded sample including dust masses found in the literature for a further 11 CCSNe and six CCSN remnants, the dust mass at saturation is found to be 0.42$^{+0.09}_{-0.05}$ M⊙. Uncertainty limits for our dust masses were determined from a Bayesian analysis more » using the affine invariant Markov chain Monte Carlo ensemble sampler emcee with damocles. The best-fitting line profile models for our sample all required grain radii between 0.1 and 0.5 $\mu$m. Our results are consistent with CCSNe forming enough dust in their ejecta to significantly contribute to the dust budget of the Universe.

« less
Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10369279
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
3
Page Range or eLocation-ID:
p. 4302-4343
ISSN:
0035-8711
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The detailed observations of GW170817 proved for the first time directly that neutron star mergers are a major production site of heavy elements. The observations could be fit by a number of simulations that qualitatively agree, but can quantitatively differ (e.g., in total r-process mass) by an order of magnitude. We categorize kilonova ejecta into several typical morphologies motivated by numerical simulations, and apply a radiative transfer Monte Carlo code to study how the geometric distribution of the ejecta shapes the emitted radiation. We find major impacts on both spectra and light curves. The peak bolometric luminosity can vary by two orders of magnitude and the timing of its peak by a factor of five. These findings provide the crucial implication that the ejecta masses inferred from observations around the peak brightness are uncertain by at least an order of magnitude. Mixed two-component models with lanthanide-rich ejecta are particularly sensitive to geometric distribution. A subset of mixed models shows very strong viewing angle dependence due to lanthanide “curtaining,” which persists even if the relative mass of lanthanide-rich component is small. The angular dependence is weak in the rest of our models, but different geometric combinations of the two componentsmore »lead to a highly diverse set of light curves. We identify geometry-dependent P Cygni features in late spectra that directly map out strong lines in the simulated opacity of neodymium, which can help to constrain the ejecta geometry and to directly probe the r-process abundances.

    « less
  2. ABSTRACT

    We present multi-instrument observations of the disc around the Herbig Ae star, HD 145718, employing geometric and Monte Carlo radiative transfer models to explore the disc orientation, the vertical and radial extent of the near-infrared (NIR) scattering surface, and the properties of the dust in the disc surface and sublimation rim. The disc appears inclined at 67–71°, with position angle, PA = −1.0 to 0.6°, consistent with previous estimates. The NIR scattering surface extends out to ${\sim}75\,$ au and we infer an aspect ratio, hscat(r)/r ∼ 0.24 in J band; ∼0.22 in H band. Our Gemini Planet Imager images and VLTI + CHARA NIR interferometry suggest that the disc surface layers are populated by grains ≳λ/2π in size, indicating these grains are aerodynamically supported against settling and/or the density of smaller grains is relatively low. We demonstrate that our geometric analysis provides a reasonable assessment of the height of the NIR scattering surface at the outer edge of the disc and, if the inclination can be independently constrained, has the potential to probe the flaring exponent of the scattering surface in similarly inclined (i ≳ 70°) discs. In re-evaluating HD 145718’s stellar properties, we found that the object’s dimming events – previously characterized as UX Ormore »and dipper variability – are consistent with dust occultation by grains larger, on average, than found in the ISM. This occulting dust likely originates close to the inferred dust sublimation radius at $0.17\,$ au.

    « less
  3. Abstract In recent years, many Type IIn supernovae have been found to share striking similarities with the peculiar SN 2009ip, whose true nature is still under debate. Here, we present 10 yr of observations of SN 2011fh, an interacting transient with spectroscopic and photometric similarities to SN 2009ip. SN 2011fh had an M r ∼ −16 mag brightening event, followed by a brighter M r ∼ −18 mag luminous outburst in 2011 August. The spectra of SN 2011fh are dominated by narrow to intermediate Balmer emission lines throughout its evolution, with P Cygni profiles indicating fast-moving material at ∼6400 km s −1 . HST/WFC3 observations from 2016 October revealed a bright source with M F814W ≈ −13.3 mag, indicating that we are seeing the ongoing interaction of the ejecta with the circumstellar material or that the star might be going through an eruptive phase five years after the luminous outburst of 2011. Using HST photometry of the stellar cluster around SN 2011fh, we estimated an age of ∼4.5 Myr for the progenitor, which implies a stellar mass of ∼60 M ⊙ , using single-star evolution models, or a mass range of 35–80 M ⊙ , considering a binary system. Wemore »also show that the progenitor of SN 2011fh exceeded the classical Eddington limit by a large factor in the months preceding the luminous outburst of 2011, suggesting strong super-Eddington winds as a possible mechanism for the observed mass loss. These findings favor an energetic outburst in a young and massive star, possibly a luminous blue variable.« less
  4. ABSTRACT

    The observed diversity in Type Ia supernovae (SNe Ia) – the thermonuclear explosions of carbon–oxygen white dwarf stars used as cosmological standard candles – is currently met with a variety of explosion models and progenitor scenarios. To help improve our understanding of whether and how often different models contribute to the occurrence of SNe Ia and their assorted properties, we present a comprehensive analysis of seven nearby SNe Ia. We obtained one to two epochs of optical spectra with Gemini Observatory during the nebular phase (>200 d past peak) for each of these events, all of which had time series of photometry and spectroscopy at early times (the first ∼8 weeks after explosion). We use the combination of early- and late-time observations to assess the predictions of various models for the explosion (e.g. double-detonation, off-centre detonation, stellar collisions), progenitor star (e.g. ejecta mass, metallicity), and binary companion (e.g. another white dwarf or a non-degenerate star). Overall, we find general consistency in our observations with spherically symmetric models for SN Ia explosions, and with scenarios in which the binary companion is another degenerate star. We also present an in-depth analysis of SN 2017fzw, a member of the subgroup of SNe Ia which appear to be transitional betweenmore »the subluminous ‘91bg-like’ events and normal SNe Ia, and for which nebular-phase spectra are rare.

    « less
  5. Cometary activity is a manifestation of sublimation-driven processes at the surface of nuclei. However, cometary outbursts may arise from other processes that are not necessarily driven by volatiles. In order to fully understand nuclear surfaces and their evolution, we must identify the causes of cometary outbursts. In that context, we present a study of mini-outbursts of comet 46P/Wirtanen. Six events are found in our long-term lightcurve of the comet around its perihelion passage in 2018. The apparent strengths range from −0.2 to −1.6 mag in a 5" radius aperture, and correspond to dust masses between ∼104 to 106 kg, but with large uncertainties due to the unknown grain size distributions. However, the nominal mass estimates are the same order of magnitude as the mini-outbursts at comet 9P/Tempel 1 and 67P/Churyumov-Gerasimenko, events which were notably lacking at comet 103P/Hartley 2. We compare the frequency of outbursts at the four comets, and suggest that the surface of 46P has large-scale (∼10-100 m) roughness that is intermediate to that of 67P and 103P, if not similar to the latter. The strength of the outbursts appear to be correlated with time since the last event, but a physical interpretation with respect to solar insolationmore »is lacking. We also examine Hubble Space Telescope images taken about 2 days following a near-perihelion outburst. No evidence for macroscopic ejecta was found in the image, with a limiting radius of about 2-m.« less