skip to main content


Title: PASSAGES: the Large Millimeter Telescope and ALMA observations of extremely luminous high-redshift galaxies identified by the Planck
ABSTRACT

The Planck All-Sky Survey to Analyze Gravitationally-lensed Extreme Starbursts project aims to identify a population of extremely luminous galaxies using the Planck all-sky survey and to explore the nature of their gas fuelling, induced starburst, and the resulting feedback that shape their evolution. Here, we report the identification of 22 high-redshift luminous dusty star-forming galaxies (DSFGs) at z = 1.1–3.3 drawn from a candidate list constructed using the Planck Catalogue of Compact Sources and Wide-field Infrared Survey Explorer all-sky survey. They are confirmed through follow-up dust continuum imaging and CO spectroscopy using AzTEC and the Redshift Search Receiver on the Large Millimeter Telescope Alfonso Serrano. Their apparent infrared luminosities span (0.1–3.1) × 1014 L⊙ (median of 1.2 × 1014 L⊙), making them some of the most luminous galaxies found so far. They are also some of the rarest objects in the sky with a source density of ≲0.01 deg−2. Our Atacama Large Millimeter/submillimeter Array 1.1 mm continuum observations with θ ≈ 0.4 arcsec resolution show clear ring or arc morphologies characteristic of strong lensing. Their lensing-corrected luminosity of LIR ≳ 1013 L⊙ (star-formation rate ≳ 103 M⊙ yr−1) indicates that they are the magnified versions of the most intrinsically luminous DSFGs found at these redshifts. Our spectral energy distribution analysis finds little detectable active galactic nucleus (AGN) activity despite their enormous luminosity, and any AGN activity present must be extremely heavily obscured.

 
more » « less
NSF-PAR ID:
10369287
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3911-3937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present CO J = 4–3 line and 3 mm dust continuum observations of a 100 kpc-scale filamentary Lyα nebula (SSA22 LAB18) at z = 3.1 using the Atacama Large Millimeter/submillimeter Array (ALMA). We detected the CO J = 4–3 line at a systemic zCO = 3.093 ± 0.001 at 11 σ from one of the ALMA continuum sources associated with the Lyα filament. We estimated the CO J = 4–3 luminosity of $L^{\prime }_{\rm {CO(4-3)}}=(2.3 \pm 0.2)\times 10^{9}\:$K km s−1 pc2 for this CO source, which is one order of magnitude smaller than those of typical z > 1 dusty star-forming galaxies (DSFGs) of similar far-infrared luminosity LIR ∼ 1012 L⊙. We derived a molecular gas mass of $M_{\rm {gas}} = (4.4^{+0.9}_{-0.6}) \times 10^{9}\, M_{{\odot }}$ and a star-formation rate of SFR =270 ± 160 M⊙ yr−1. We also estimated a gas depletion time of τdep = 17 ± 10 Myr, which is shorter than those of typical DSFGs. It is suggested that this source is in the transition phase from DSFG to a gas-poor, early-type galaxy. From ALMA to Herschel multi-band dust continuum observations, we measured a dust emissivity index β = 2.3 ± 0.2, which is similar to those of local gas-poor, early-type galaxies. From recent laboratory experiments, the specific chemical compositions needed to reproduce such a high β for interstellar dust at the submillimeter wavelengths. ALMA CO and multi-band dust continuum observations can constrain the evolutionary stage of high-redshift galaxies through τdep and β, and thus we can investigate the chemical composition of dust even in the early Universe.

     
    more » « less
  2. Water vapor (H2O) is one of the brightest molecular emitters after carbon monoxide (CO) in galaxies with high infrared (IR) luminosity, allowing us to investigate the warm and dense phase of the interstellar medium (ISM) where star formation occurs. However, due to the complexity of its radiative spectrum, H2O is not frequently exploited as an ISM tracer in distant galaxies. Therefore, H2O studies of the warm and dense gas at high-zremain largely unexplored. In this work, we present observations conducted with the Northern Extended Millimeter Array (NOEMA) toward threez > 6 IR-bright quasarsJ2310+1855,J1148+5251, andJ0439+1634targeted in their multiple para- and ortho-H2O transitions (312 − 303, 111 − 000, 220 − 211, and 422 − 413), as well as their far-IR (FIR) dust continuum. By combining our data with previous measurements from the literature, we estimated the dust masses and temperatures, continuum optical depths, IR luminosities, and star formation rates (SFR) from the FIR continuum. We modeled the H2O lines using the MOLPOP-CEP radiative transfer code, finding that water vapor lines in our quasar host galaxies are primarily excited in the warm, dense (with a gas kinetic temperature and density ofTkin = 50 K,nH2 ∼ 104.5 − 105 cm−3) molecular medium with a water vapor column density ofNH2O ∼ 2 × 1017 − 3 × 1018 cm−3. High-JH2O lines are mainly radiatively pumped by the intense optically-thin far-IR radiation field associated with a warm dust component at temperatures ofTdust ∼ 80 − 190 K that account for < 5 − 10% of the total dust mass. In the case of J2310+1855, our analysis points to a relatively high value of the continuum optical depth at 100 μm (τ100 ∼ 1). Our results are in agreement with expectations based on the H2O spectral line energy distribution of local and high-zultra-luminous IR galaxies and active galactic nuclei (AGN). The analysis of the Boltzmann diagrams highlights the interplay between collisions and IR pumping in populating the high H2O energy levels and it allows us to directly compare the excitation conditions in the targeted quasar host galaxies. In addition, the observations enable us to sample the high-luminosity part of the H2O–total-IR (TIR) luminosity relations (LH2O − LTIR). Overall, our results point to supralinear trends that suggest H2O–TIR relations are likely driven by IR pumping, rather than the mere co-spatiality between the FIR continuum- and line-emitting regions. The observedLH2O/LTIRratios in ourz > 6 quasars do not show any strong deviations with respect to those measured in star-forming galaxies and AGN at lower redshifts. This supports the notion that H2O can be likely used to trace the star formation activity buried deep within the dense molecular clouds.

     
    more » « less
  3. ABSTRACT

    We present band 6 ALMA observations of a heavily obscured radio-loud (L1.4 GHz = 1025.4 W Hz−1) active galactic nucleus (AGN) candidate at zphot = 6.83 ± 0.06 found in the 1.5 deg2 COSMOS field. The ALMA data reveal detections of exceptionally strong [C ii]158 $\mu$m (z[C ii] = 6.8532) and underlying dust continuum emission from this object (COS-87259), where the [C ii] line luminosity, line width, and 158 $\mu$m continuum luminosity are comparable to those seen from z ∼ 7 sub-mm galaxies and quasar hosts. The 158 $\mu$m continuum detection suggests a total infrared luminosity of $9\times 10^{12}\, \mathrm{ L}_\odot$ with corresponding very large obscured star formation rate (1300 M⊙ yr−1) and dust mass ($2\times 10^9\, \mathrm{ M}_\odot$). The strong break seen between the VIRCam and IRAC photometry perhaps suggests that COS-87259 is an extremely massive reionization-era galaxy with $M_\ast \approx 1.7\times 10^{11}\, \mathrm{ M}_\odot$. Moreover, the MIPS, PACS, and SPIRE detections imply that this object harbours an AGN that is heavily obscured ($\tau _{_{\mathrm{9.7\,\mu m}}}=2.3$) with a bolometric luminosity of approximately $5\times 10^{13}\, \mathrm{ L}_\odot$. Such a very high AGN luminosity suggests that this object is powered by an ≈1.6 × 10$^9\, \mathrm{ M}_\odot$ black hole if accreting near the Eddington limit, and is effectively a highly obscured version of an extremely ultraviolet (UV)-luminous (M1450 ≈ −27.3) z ∼ 7 quasar. Notably, these z ∼ 7 quasars are an exceedingly rare population (∼0.001 deg−2), while COS-87259 was identified over a relatively small field. Future very wide area surveys with e.g. Roman and Euclid have the potential to identify many more extremely red yet UV-bright z ≳ 7 objects similar to COS-87259, providing richer insight into the occurrence of intense obscured star formation and supermassive black hole growth among this population.

     
    more » « less
  4. null (Ed.)
    We present a multiline survey of the interstellar medium (ISM) in two z  > 6 quasar host galaxies, PJ231−20 ( z  = 6.59) and PJ308−21 ( z  = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up  = 7, 10, 15, 16), H 2 O 3 12  − 2 21 , 3 21  − 3 12 , 3 03  − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J CO excitation in both quasar hosts. Our CO SLED modeling of the quasar PJ231−20 shows that PDRs dominate the molecular mass and CO luminosities for J up  ≤ 7, while the J up  ≥ 10 CO emission is likely driven by X-ray dissociation regions produced by the active galactic nucleus (AGN) at the very center of the quasar host. The J up  > 10 lines are undetected in the other galaxies in our study. The H 2 O 3 21  − 3 12 line detection in the same quasar places this object on the L H 2 O  −  L TIR relation found for low- z sources, thus suggesting that this water vapor transition is predominantly excited by IR pumping. Models of the H 2 O SLED and of the H 2 O-to-OH 163 μm ratio point to PDR contributions with high volume and column density ( n H  ∼ 0.8 × 10 5 cm −3 , N H  = 10 24 cm −2 ) in an intense radiation field. Our analysis suggests a less highly excited medium in the companion galaxies. However, the current data do not allow us to definitively rule out an AGN in these sources, as suggested by previous studies of the same objects. This work demonstrates the power of multiline studies of FIR diagnostics in order to dissect the physical conditions in the first massive galaxies emerging from cosmic dawn. 
    more » « less
  5. Abstract We present results from Atacama Large Millimeter/submillimeter Array (ALMA) 1.2 mm continuum observations of a sample of 27 star-forming galaxies at z = 2.1–2.5 from the MOSFIRE Deep Evolution Field survey with metallicity and star formation rate measurements from optical emission lines. Using stacks of Spitzer, Herschel, and ALMA photometry (rest frame ∼8–400 μ m), we examine the infrared (IR) spectral energy distributions (SED) of z ∼ 2.3 subsolar-metallicity (∼0.5 Z ⊙ ) luminous infrared galaxies (LIRGs). We find that the data agree well with an average template of higher-luminosity local low-metallicity dwarf galaxies (reduced χ 2 = 1.8). When compared with the commonly used templates for solar-metallicity local galaxies or high-redshift LIRGs and ultraluminous IR galaxies, even in the most favorable case (with reduced χ 2 = 2.8), the templates are rejected at >98% confidence. The broader and hotter IR SED of both the local dwarfs and high-redshift subsolar-metallicity galaxies may result from different grain properties or a harder/more intense ionizing radiation field that increases the dust temperature. The obscured star formation rate (SFR) indicated by the far-IR emission of the subsolar-metallicity galaxies is only ∼60% of the total SFR, considerably lower than that of the local LIRGs with ∼96%–97% obscured fractions. Due to the evolving IR SED shape, the local LIRG templates fit to mid-IR data overestimate the Rayleigh–Jeans tail measurements by a factor of 2–20. These templates underestimate IR luminosities if fit to the observed ALMA fluxes by >0.4 dex. At a given stellar mass or metallicity, dust masses at z ∼ 2.3 are an order of magnitude higher than z ∼ 0. Given the predicted molecular gas fractions, the observed z ∼ 2.3 dust-to-stellar mass ratios suggest lower dust-to-molecular gas masses than in local galaxies with similar metallicities. 
    more » « less