skip to main content


Title: GST-VO 2 -based near-field multistage radiative thermal rectifier

A near-field multistage radiative thermal rectifier is proposed based on two different phase-change materials, which can achieve multistage thermal rectification with different rectification ratios. The phase-change materials vanadium dioxide (VO2) and Ge2Sb2Te5(GST), with different metal-insulator transition temperatures, are utilized within the active terminal of thermal rectifier. Four types of active terminal structures, including multi-film and composite nanograting structures, are introduced to explore to multistage thermal rectification. Our calculations find that the active terminal composed of a one-dimensional VO2grating atop a GST thin film is the most suitable for multistage thermal rectification due to its realization of well-distributed and flexible thermal rectification. Furthermore, it is found that the passive terminal temperature of thermal rectifier can significantly affect the multistage radiative thermal rectification by modifying the rectification ratio and adjusting the stage number of multistage thermal rectification. This work sheds light on the role of different phase-change materials within the design of promising radiative thermal rectifiers boasting multistage thermal rectification.

 
more » « less
NSF-PAR ID:
10369334
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
12
Issue:
6
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 2135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Interface stress between structural materials and thin film coatings has a significant influence on the resonant frequency of microelectromechanical system (MEMS) resonators. In this work, the axial stress on different types of buckled bridge MEMS resonator structures is controlled through the solid‐to‐solid phase transition of a VO2thin film coating. The devices have identical dimensions, but different buckling orientations and profiles due to the combined effect of overetching and residual thermal stress mismatch. Thermal actuation is used to tune the resonant frequency of the device, but the changes in frequency are found to be dependent on the type of buckling for the device. Thermal actuation is achieved by applying an electrical current to integrated heaters, or by uniform substrate heating. Bidirectional tunability is found when substrate heating is used, while Joule heating shows a monotonic change in frequency. This phenomenon can be attributed to the transition in boundary conditions, where the turning points are indicated by the prominent changes in buckling amplitude. In addition, devices with opposite buckling orientations exhibit different tuning behaviors which can be explained by different bending moments induced by beam stress interface modification.

     
    more » « less
  2. Abstract

    Hybrid material systems are a promising approach for extending the capabilities of silicon photonics. Given the weak electro‐optic and thermo‐optic effects in silicon, there is intense interest in integrating an ultrafast‐switching phase‐change material with a large refractive index contrast into the waveguide, such as vanadium dioxide (VO2). It is well established that the phase transition in VO2thin films can be triggered by ultrafast, 800 nm laser pulses, and that pump‐laser fluence is a critical determinant of the recovery time of thin films irradiated by femtosecond pulses. However, thin‐film experiments are not reliable guides to a VO2:Si system for all‐optical, on‐chip switching because of the differences in VO2optical constants in the telecommunication band, and the complex sample geometry and alignment issues in a waveguide geometry. This paper reports the first demonstration that the reversible, ultrafast photoinduced phase transition in VO2can achieve sub‐picosecond response when small VO2volumes are integrated into a silicon waveguide as the active element. The result suggests that VO2can be pursued as a strong candidate for waveguide switching with sub‐picosecond on‐off times.

     
    more » « less
  3. Abstract

    Mott insulator VO2exhibits an ultrafast and reversible semiconductor‐to‐metal transition (SMT) near 340 K (67 °C). In order to fulfill the multifunctional device applications, effective transition temperature (Tc) tuning as well as integrated functionality in VO2is desired. In this study, multifunctionalities including tailorable SMT characteristics, ferromagnetic (FM) integration, and magneto‐optical (MO) coupling, have been demonstrated via metal/VO2nanocomposite designs with controlled morphology, i.e., a two‐phase Ni/VO2pillar‐in‐matrix geometry and a three‐phase Au/Ni/VO2particle‐in‐matrix geometry. EvidentTcreduction of 20.4 to 54.9 K has been achieved by morphology engineering. Interestingly, the Au/Ni/VO2film achieves a record‐lowTcof 295.2 K (22.2 °C), slightly below room temperature (25 °C). The change in film morphology is also correlated with unique property tuning. Highly anisotropic magnetic and optical properties have been demonstrated in Ni/VO2film, whereas Au/Ni/VO2film exhibits isotropic properties because of the uniform distribution of Au/Ni nanoparticles. Furthermore, a strong MO coupling with enhanced magnetic coercivity and anisotropy is demonstrated for both films, indicating great potential for optically active property tuning. This demonstration opens exciting opportunities for the VO2‐based device implementation towards smart windows, next‐generation optical‐coupled switches, and spintronic devices.

     
    more » « less
  4. Abstract

    Ramp‐reversal memory has recently been discovered in several insulator‐to‐metal transition materials where a non‐volatile resistance change can be set by repeatedly driving the material partway through the transition. This study uses optical microscopy to track the location and internal structure of accumulated memory as a thin film of VO2is temperature cycled through multiple training subloops. These measurements reveal that the gain of insulator phase fraction between consecutive subloops occurs primarily through front propagation at the insulator‐metal boundaries. By analyzing transition temperature maps, it is found, surprisingly, that the memory is also stored deep inside both insulating and metallic clusters throughout the entire sample, making the metal‐insulator coexistence landscape more rugged. This non‐volatile memory is reset after heating the sample to higher temperatures, as expected. Diffusion of point defects is proposed to account for the observed memory writing and subsequent erasing over the entire sample surface. By spatially mapping the location and character of non‐volatile memory encoding in VO2, this study results enable the targeting of specific local regions in the film where the full insulator‐to‐metal resistivity change can be harnessed in order to maximize the working range of memory elements for conventional and neuromorphic computing applications.

     
    more » « less
  5. The proposed X-ray spatial light modulator (SLM) concept is based on the difference of X-ray scattering from amorphous and crystalline regions of phase change materials (PCMs) such as Ge2Sb2Te5(GST). In our X-ray SLM design, theon” andoff” states correspond to a patterned and homogeneous state of a GST thin film, respectively. The patterned state is obtained by exposing the homogeneous film to laser pulses. In this paper, we present patterning results in GST thin films characterized by microwave impedance microscopy and X-ray small-angle scattering at the Stanford Synchrotron Radiation Lightsource.

     
    more » « less