skip to main content


Title: The late-time light curves of Type Ia supernovae: confronting models with observations
ABSTRACT

Type Ia supernovae (SNe Ia) play a crucial role as standardizable candles in measurements of the Hubble constant and dark energy. Increasing evidence points towards multiple possible explosion channels as the origin of normal SNe Ia, with possible systematic effects on the determination of cosmological parameters. We present, for the first time, a comprehensive comparison of publicly available SN Ia model nucleosynthetic data with observations of late-time light curve observations of SN Ia events. These models span a wide range of white dwarf (WD) progenitor masses, metallicities, explosion channels, and numerical methodologies. We focus on the influence of 57Ni and its isobaric decay product 57Co in powering the late-time (t > 1000 d) light curves of SNe Ia. 57Ni and 57Co are neutron-rich relative to the more abundant radioisotope 56Ni, and are consequently a sensitive probe of neutronization at the higher densities of near-Chandrashekhar (near-MCh) progenitor WDs. We demonstrate that observations of one SN Ia event, SN 2015F is only consistent with a sub-Chandrasekhar (sub-MCh) WD progenitor. Observations of four other events (SN 2011fe, SN 2012cg, SN 2014J, and SN2013aa) are consistent with both near-MCh and sub-MCh progenitors. Continued observations of late-time light curves of nearby SNe Ia will provide crucial information on the nature of the SN Ia progenitors.

 
more » « less
NSF-PAR ID:
10369346
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3703-3715
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. At present, there are strong indications that white dwarf (WD) stars with masses well below the Chandrasekhar limit ( M Ch ≈ 1.4 M ⊙ ) contribute a significant fraction of SN Ia progenitors. The relative fraction of stable iron-group elements synthesized in the explosion has been suggested as a possible discriminant between M Ch and sub- M Ch events. In particular, it is thought that the higher-density ejecta of M Ch WDs, which favours the synthesis of stable isotopes of nickel, results in prominent [Ni  II ] lines in late-time spectra (≳150 d past explosion). Aims. We study the explosive nucleosynthesis of stable nickel in SNe Ia resulting from M Ch and sub- M Ch progenitors. We explore the potential for lines of [Ni  II ] in the optical an near-infrared (at 7378 Å and 1.94 μm) in late-time spectra to serve as a diagnostic of the exploding WD mass. Methods. We reviewed stable Ni yields across a large variety of published SN Ia models. Using 1D M Ch delayed-detonation and sub- M Ch detonation models, we studied the synthesis of stable Ni isotopes (in particular, 58 Ni) and investigated the formation of [Ni  II ] lines using non-local thermodynamic equilibrium radiative-transfer simulations with the CMFGEN code. Results. We confirm that stable Ni production is generally more efficient in M Ch explosions at solar metallicity (typically 0.02–0.08 M ⊙ for the 58 Ni isotope), but we note that the 58 Ni yield in sub- M Ch events systematically exceeds 0.01 M ⊙ for WDs that are more massive than one solar mass. We find that the radiative proton-capture reaction 57 Co( p ,  γ ) 58 Ni is the dominant production mode for 58 Ni in both M Ch and sub- M Ch models, while the α -capture reaction on 54 Fe has a negligible impact on the final 58 Ni yield. More importantly, we demonstrate that the lack of [Ni  II ] lines in late-time spectra of sub- M Ch events is not always due to an under-abundance of stable Ni; rather, it results from the higher ionization of Ni in the inner ejecta. Conversely, the strong [Ni  II ] lines predicted in our 1D M Ch models are completely suppressed when 56 Ni is sufficiently mixed with the innermost layers, which are rich in stable iron-group elements. Conclusions. [Ni  II ] lines in late-time SN Ia spectra have a complex dependency on the abundance of stable Ni, which limits their use in distinguishing among M Ch and sub- M Ch progenitors. However, we argue that a low-luminosity SN Ia displaying strong [Ni  II ] lines would most likely result from a Chandrasekhar-mass progenitor. 
    more » « less
  2. ABSTRACT

    We analyse new multifilter Hubble Space Telescope (HST) photometry of the normal Type Ia supernova (SN Ia) 2011fe out to ≈2400 d after maximum light, the latest observations to date of a SN Ia. We model the pseudo-bolometric light curve with a simple radioactive decay model and find energy input from both 57Co and 55Fe are needed to power the late-time luminosity. This is the first detection of 55Fe in a SN Ia. We consider potential sources of contamination such as a surviving companion star or delaying the deposition time-scale for 56Co positrons but these scenarios are ultimately disfavored. The relative isotopic abundances place direct constraints on the burning conditions experienced by the white dwarf (WD). Additionally, we place a conservative upper limit of <10−3 M⊙ on the synthesized mass of 44Ti. Only two classes of explosion models are currently consistent with all observations of SN 2011fe: (1) the delayed detonation of a low-ρc, near-MCh (1.2–1.3 M⊙) WD, or (2) a sub-MCh (1.0–1.1 M⊙) WD experiencing a thin-shell double detonation.

     
    more » « less
  3. Our recent work demonstrates a correlation between the high-velocity blue edge, vedge, of the ironpeak Fe/Co/Ni H-band emission feature and the optical light curve shape of normal, transitional and sub-luminous type Ia Supernovae (SNe Ia). We explain this correlation in terms of SN Ia physics. vedge corresponds to the sharp transition between the complete and incomplete silicon burning regions in the ejecta. It measures the point in velocity space where the outer 56Ni mass fraction, XNi, falls to the order of 0.03-0.10. For a given 56Ni mass, M(56Ni), vedge is sensitive to the speci c kinetic energy Ekin(M(56Ni)=MWD) of the corresponding region. Combining vedge with light curve parameters (i.e., sBV , m15;s in B and V ) allows us to distinguish between explosion scenarios. The correlation between vedge and light-curve shape is consistent with explosion models near the Chandrasekhar limit. However, the available sub-MCh WD explosion model based on SN 1999by exhibits velocities which are too large to explain the observations. Finally, the sub-luminous SN 2015bo exhibits signatures of a dynamical merger of two WDs demonstrating diversity among explosion scenarios at the faint end of the SNe Ia population. 
    more » « less
  4. Abstract

    We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) ∼130 days post-explosion. We identify the first MIR lines beyond 14μm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Tiii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Coiii] 11.888μm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD≈1.37M) of high central density (ρc≥ 2.0 × 109g cm−3) seen equator-on, which producedM(56Ni) =0.324MandM(58Ni) ≥0.06M. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previously possible.

     
    more » « less
  5. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

     
    more » « less