skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP
Abstract The unique properties of cationic nanogels, such as their hydrophilicity and high loading capacity, make them a promising platform as drug delivery agents, particularly for the delivery of hydrophilic biomolecules. Although several synthetic methods exist for cationic nanogels, polymerization in dispersed media is advantageous due to its ability to provide control over composition and high monomer conversion. However, polymer droplets typically suffer from a significant increase in size during polymerization due to the Ostwald ripening process. Herein, the preparation of cationic nanogels by atom transfer radical polymerization under inverse microemulsion conditions of a hydrophilic inimer that prevents monomer diffusion and hence limits droplets’ growth during polymerization is reported. Additionally, the surface functionality of the nanogels can be modulated by the application of hydrophobic reactive surfactants or by grafting hydrophilic shells to form core‐shell cationic nanogels. The synthesized cationic nanogels are biocompatible, internalized to HEK 293 cells, and have a high complexation ability for plasmid DNA.  more » « less
Award ID(s):
2202747
PAR ID:
10369361
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Chemistry and Physics
Volume:
224
Issue:
1
ISSN:
1022-1352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrochemically controlled redox-switchable polymerization uses an electric potential to bias the monomer selectivity of a catalyst. Many ferrocene-appended catalysts can exist in two oxidation states, a neutral reduced state and an oxidized cationic state. Electrochemical generation of the oxidized cationic state produces a charged species whose counteranion is determined by the identity of the supporting electrolyte anion. Herein, the role the counteranion has on monomer selectivity and polymerization kinetics is investigated. Minimal differences in monomer selectivity in the reduced state was found, however, in the oxidized state, the coordinating ability of the counteranion greatly influenced the rate of polymerization. How activity differences governed by the choice of electrolyte can be utilized to access desired diblock copolymers is also described. 
    more » « less
  2. Abstract An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side‐chain polymers to be grafted from the pendant RAFT agent by a radical‐mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one‐pot tandem without intermediate purification. 
    more » « less
  3. Abstract Nature‐inspired functional surfaces with micro‐ and nanoscale features have garnered interest for potential applications in optics, imaging, and sensing. Traditional fabrication methods, such as lithography and self‐assembly, face limitations in versatility, scalability, and morphology control. This study introduces an innovative technology, condensed droplet polymerization (CDP), for fabricating polymeric micro‐ and nano‐dome arrays (PDAs) with readily tunable geometric properties—a challenging feat for conventional methods. The CDP process leverages free‐radical polymerization in condensed monomer droplets, allowing rapid production of PDAs with targeted sizes, radii of curvature, and surface densities by manipulating a key synthesis parameter: the temperature of a filament array that activates initiators. This work systematically unravels its effects on polymerization kinetics, viscoelastic properties of the polymerizing droplets, and geometric characteristics of the PDAs. Utilizing in situ digital microscope, this work reveals the morphological evolution of the PDAs during the process. The resulting PDAs exhibit distinct optical properties, including magnification that enables high‐resolution imaging beyond the diffraction limit of conventional microscopes. This work demonstrates the ability to magnify and focus light, enhancing imaging of subwavelength structures and biological specimens. This work advances the understanding of polymerization mechanisms in nano‐sized reactors (i.e., droplets) and paves the way for developing compact optical imaging and sensing technologies. 
    more » « less
  4. Abstract Gaining temporal control over chain growth is a key challenge in the enhancement of controlled living polymerizations. Though research on photocontrolled polymerizations is still in its infancy, it has already proven useful in the development of previously inaccessible materials. Photocontrol has now been extended to cationic polymerizations using 2,4,6‐triarylpyrylium salts as photocatalysts. Despite the ability to stop polymerization for a short time, monomer conversion was observed over long dark periods. Improved catalyst systems based on Ir complexes give optimal temporal control over chain growth. The excellent stability of these complexes and the ability to tune the excited and ground state redox potentials to regulate the number of monomer additions per cation formed allows polymerization to be halted for more than 20 hours. The excellent stability of these iridium catalysts in the presence of more nucleophilic species enables chain‐end functionalization of these polymers. 
    more » « less
  5. Abstract The synthesis of high‐molecular‐weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain‐transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)–organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol−1can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end. 
    more » « less