Abstract We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from Gaia EDR3 and DR3, supplemented by additional available information where needed. After separating our sample into the different CEMP morphological groups in the Yoon–Beers diagram of absolute carbon abundance versus metallicity, we used the derived specific energies and actions ( E , J r , J ϕ , J z ) to cluster them into Chemodynamically Tagged Groups (CDTGs). We then analyzed the elemental-abundance dispersions within these clusters by comparing them to the dispersion of clusters that were generated at random. We find that, for the Group I (primarily CEMP- s and CEMP- r / s ) clustered stars, there exist statistically insignificant intracluster dispersions in [Fe/H], [C/Fe] c (evolution corrected carbon), and [Mg/Fe] when compared to the intracluster dispersions of randomly clustered Group I CEMP stars. In contrast, the Group II (primarily CEMP-no) stars exhibit clear similarities in their intracluster abundances, with very low, statistically significant, dispersions in [C/Fe] c and marginally significant results in [Mg/Fe]. These results strongly indicate that Group I CEMP stars received their carbon enhancements from local phenomena, such as mass transfer from an evolved binary companion in regions with extended star formation histories, while the CDTGs of Group II CEMP stars formed in low-metallicity environments that had already been enriched in carbon, likely from massive rapidly rotating ultra- and hyper-metal-poor stars and/or supernovae associated with high-mass early-generation stars. 
                        more » 
                        « less   
                    
                            
                            On the inconsistency of [C/Fe] abundances and the fractions of carbon-enhanced metal-poor stars among various stellar surveys
                        
                    
    
            ABSTRACT Carbon-enhanced metal-poor (CEMP) stars are a unique resource for Galactic archaeology because they probe the properties of the First Stars, early chemical evolution, and binary interactions at very low metallicity. Comparing the fractions and properties of CEMP stars in different Galactic environments can provide us with unique insights into the formation and evolution of the Milky Way halo and its building blocks. In this work, we investigate whether directly comparing fractions of CEMP stars from different literature samples of very metal-poor ($$\rm {[Fe/H]}\,\lt\, -2.0$$) stars is valid. We compiled published CEMP fractions and samples of Galactic halo stars from the past 25 years, and find that they are not all consistent with each other. Focusing on giant stars, we find significant differences between various surveys when comparing their trends of [Fe/H] versus [C/Fe] and their distributions of CEMP stars. To test the role of the analysis pipelines for low-resolution spectroscopic samples, we re-analysed giant stars from various surveys with the sspp and ferre pipelines. We found systematic differences in [C/Fe] of ∼0.1−0.4 dex, partly independent of degeneracies with the stellar atmospheric parameters. These systematics are likely due to the different pipeline approaches, different assumptions in the employed synthetic grids, and/or the comparison of different evolutionary phases. We conclude that current biases in (the analysis of) very metal-poor samples limit the conclusions one can draw from comparing different surveys. We provide some recommendations and suggestions that will hopefully aid the community to unlock the full potential of CEMP stars for Galactic archaeology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1927130
- PAR ID:
- 10369379
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 515
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 4082-4098
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor.more » « less
- 
            Context.Carbon-enhanced metal-poor (CEMP) stars ([C/Fe] > 0.7) are known to exist in large numbers at low metallicity in the Milky Way halo and are important tracers of early Galactic chemical evolution. However, very few stars of this kind have been identified in the classical dwarf spheroidal (dSph) galaxies, and detailed abundances, including neutron-capture element abundances, have only been reported for 13 stars. Aims.We aim to derive detailed abundances of six CEMP stars identified in the Carina dSph and compare the abundances to CEMP stars in other dSph galaxies and the Milky Way halo. This is the largest sample of CEMP stars in a dSph galaxy analysed to date. Methods.One-dimensional local thermodynamic equilibrium (LTE) elemental abundances are derived via equivalent width and spectral synthesis using high-resolution spectra of the six stars obtained with the MIKE spectrograph at Las Campanas Observatory. Results.We derived abundances or upper limits for up to 27 elements from C to Os in the six stars. Our analysis reveals one of the stars to be a CEMP-no star with very low neutron-capture element abundances. In contrast, the other five stars all show enhancements in neutron-capture elements in addition to their carbon enhancement, classifying them as CEMP-sand -r/sstars. The six stars have similarαand iron-peak element abundances to other stars in Carina, except for the CEMP-no star, which shows enhancement in Na, Mg, and Si. We explored the absolute carbon abundances (A(C)) of CEMP stars in dSph galaxies and find similar behaviour to that seen for Milky Way halo CEMP stars, but highlight that CEMP-r/sstars primarily have very highA(C) values. We also compared the neutron-capture element abundances of the CEMP-r/sstars in our sample to recenti-process yields, which provide a good match to the derived abundances.more » « less
- 
            null (Ed.)ABSTRACT Carbon enhanced metal poor (CEMP)-no stars, a subset of CEMP stars ($$\rm [C/Fe]\ge 0.7$$ and $$\rm [Fe/H]\lesssim -1$$) have been discovered in ultra-faint dwarf (UFD) galaxies, with $$M_{\rm vir}\approx 10^8{\, \mathrm{ M}_\odot }$$ and $$M_{\ast }\approx 10^3-10^4{\, \mathrm{ M}_\odot }$$ at z = 0, as well as in the halo of the Milky Way (MW). These CEMP-no stars are local fossils that may reflect the properties of the first (Pop III) and second (Pop II) generation of stars. However, cosmological simulations have struggled to reproduce the observed level of carbon enhancement of the known CEMP-no stars. Here, we present new cosmological hydrodynamic zoom-in simulations of isolated UFDs that achieve a gas mass resolution of $$m_{\rm gas}\approx 60{\, \mathrm{ M}_\odot }$$. We include enrichment from Pop III faint supernovae (SNe), with ESN = 0.6 × 1051 erg, to understand the origin of CEMP-no stars. We confirm that Pop III and Pop II stars are mainly responsible for the formation of CEMP and C-normal stars, respectively. New to this study, we find that a majority of CEMP-no stars in the observed UFDs and the MW halo can be explained by Pop III SNe with normal explosion energy (ESN = 1.2 × 1051 erg) and Pop II enrichment, but faint SNe might also be needed to produce CEMP-no stars with $$\rm [C/Fe]\gtrsim 2$$, corresponding to the absolute carbon abundance of $$\rm A(C)\gtrsim 6.0$$. Furthermore, we find that while we create CEMP-no stars with high carbon ratio $$\rm [C/Fe]\approx 3-4$$, by adopting faint SNe, it is still challenging to reproduce CEMP-no stars with extreme level of carbon abundance of $$\rm A(C)\approx 7.0-7.5$$, observed both in the MW halo and UFDs.more » « less
- 
            ABSTRACT Carbon-enhanced metal-poor (CEMP) stars comprise almost a third of stars with [Fe/H] < −2, although their origins are still poorly understood. It is highly likely that one sub-class (CEMP-s stars) is tied to mass-transfer events in binary stars, while another sub-class (CEMP-no stars) are enriched by the nucleosynthetic yields of the first generations of stars. Previous studies of CEMP stars have primarily concentrated on the Galactic halo, but more recently they have also been detected in the thick disc and bulge components of the Milky Way. Gaia DR3 has provided an unprecedented sample of over 200 million low-resolution (R ≈ 50) spectra from the BP and RP photometers. Training on the CEMP catalogue from the SDSS/SEGUE database, we use XGBoost to identify the largest all-sky sample of CEMP candidate stars to date. In total, we find 58 872 CEMP star candidates, with an estimated contamination rate of 12 per cent. When comparing to literature high-resolution catalogues, we positively identify 60–68 per cent of the CEMP stars in the data, validating our results and indicating a high completeness rate. Our final catalogue of CEMP candidates spans from the inner to outer Milky Way, with distances as close as r ∼ 0.8 kpc from the Galactic centre, and as far as r > 30 kpc. Future higher resolution spectroscopic follow-up of these candidates will provide validations of their classification and enable investigations of the frequency of CEMP-s and CEMP-no stars throughout the Galaxy, to further constrain the nature of their progenitors.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
