skip to main content


Title: R-loop-induced irreparable DNA damage evades checkpoint detection in the C. elegans germline
Abstract

Accumulation of DNA–RNA hybrids in the form of R-loops can result in replication–transcription conflict that leads to the formation of DNA double strand breaks (DSBs). Using null mutants for the two Caenorhabditis elegans genes encoding for RNaseH1 and RNaseH2, we identify novel effects of R-loop accumulation in the germline. R-loop accumulation leads, as expected, to replication stress, followed by the formation of DSBs. A subset of these DSBs are irreparable. However, unlike irreparable DSBs generated in other systems, which trigger permanent cell cycle arrest, germline irreparable DSBs are propagated to oocytes. Despite DNA damage checkpoint activation in the stem cell niche, the signaling cannot be sustained and nuclei with irreparable DNA damage progress into meiosis. Moreover, unlike other forms of DNA damage that increase germline apoptosis, R-loop-generated DSBs remain undetected by the apoptotic checkpoint. This coincides with attenuation of ATM/ATR signaling in mid-to-late meiotic prophase I. These data altogether indicate that in the germline, DSBs that are generated by R-loops can lead to irreparable DSBs that evade cellular machineries designed for damage recognition. These studies implicate germline R-loops as an especially dangerous driver of germline mutagenesis.

 
more » « less
Award ID(s):
2027955
NSF-PAR ID:
10369389
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
14
ISSN:
0305-1048
Page Range / eLocation ID:
p. 8041-8059
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In germ cells undergoing meiosis, the induction of double strand breaks (DSBs) is required for the generation of haploid gametes. Defects in the formation, detection, or recombinational repair of DSBs often result in defective chromosome segregation and aneuploidies. Central to the ability of meiotic cells to properly respond to DSBs are DNA damage response (DDR) pathways mediated by DNA damage sensor kinases. DDR signaling coordinates an extensive network of DDR effectors to induce cell cycle arrest and DNA repair, or trigger apoptosis if the damage is extensive. Despite their importance, the functions of DDR kinases and effector proteins during meiosis remain poorly understood and can often be distinct from their known mitotic roles. A key DDR kinase during meiosis is ataxia telangiectasia and Rad3‐related (ATR). ATR mediates key signaling events that control DSB repair, cell cycle progression, and meiotic silencing. These meiotic functions of ATR depend on upstream scaffolds and regulators, including the 9‐1‐1 complex and TOPBP1, and converge on many downstream effectors such as the checkpoint kinase CHK1. Here, we review the meiotic functions of the 9‐1‐1/TOPBP1/ATR/CHK1 signaling pathway during mammalian meiosis.

     
    more » « less
  2. Abstract

    DNA replication complexes (replisomes) routinely encounter proteins and unusual nucleic acid structures that can impede their progress. Barriers can include transcription complexes and R‐loops that form when RNA hybridizes with complementary DNA templates behind RNA polymerases. Cells encode several RNA polymerase and R‐loop clearance mechanisms to limit replisome exposure to these potential obstructions. One such mechanism is hydrolysis of R‐loops by ribonuclease HI (RNase HI). Here, we examine the cellular role of the interaction betweenEscherichia coliRNase HI and the single‐stranded DNA‐binding protein (SSB) in this process. Interaction with SSB localizes RNase HI foci to DNA replication sites. Mutation ofrnhAto encode an RNase HI variant that cannot interact with SSB but that maintains enzymatic activity (rnhAK60E) eliminates RNase HI foci. The mutation also produces a media‐dependent slow‐growth phenotype and an activated DNA damage response in cells lacking Rep helicase, which is an enzyme that disrupts stalled transcription complexes. RNA polymerase variants that are thought to increase or decrease R‐loop accumulation enhance or suppress, respectively, the growth phenotype ofrnhAK60E rep::kanstrains. These results identify a cellular role for the RNase HI/SSB interaction in helping to clear R‐loops that block DNA replication.

     
    more » « less
  3. In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase. 
    more » « less
  4. Summary

    Bacteria coordinate DNA replication and cell division, ensuring a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA damage, a cell cycle checkpoint is activated by expressing a cell division inhibitor. The prevailing model is that activation of the DNA damage response and protease‐mediated degradation of the inhibitor is sufficient to regulate the checkpoint process. Our recent genome‐wide screens identified the geneddcAas critical for surviving exposure to DNA damage. Similar to the checkpoint recovery proteases, the DNA damage sensitivity resulting fromddcAdeletion depends on the checkpoint enforcement protein YneA. Using several genetic approaches, we show that DdcA function is distinct from the checkpoint recovery process. Deletion ofddcAresulted in sensitivity toyneAoverexpression independent of YneA protein levels and stability, further supporting the conclusion that DdcA regulates YneA independent of proteolysis. Using a functional GFP‐YneA fusion we found that DdcA prevents YneA‐dependent cell elongation independent of YneA localization. Together, our results suggest that DdcA acts by helping to set a threshold of YneA required to establish the cell cycle checkpoint, uncovering a new regulatory step controlling activation of the DNA damage checkpoint inBacillus subtilis.

     
    more » « less
  5. R-loops are abundant three-stranded nucleic-acid structures that formin cisduring transcription. Experimental evidence suggests that R-loop formation is affected by DNA sequence and topology. However, the exact manner by which these factors interact to determine R-loop susceptibility is unclear. To investigate this, we developed a statistical mechanical equilibrium model of R-loop formation in superhelical DNA. In this model, the energy involved in forming an R-loop includes four terms—junctional and base-pairing energies and energies associated with superhelicity and with the torsional winding of the displaced DNA single strand around the RNA:DNA hybrid. This model shows that the significant energy barrier imposed by the formation of junctions can be overcome in two ways. First, base-pairing energy can favor RNA:DNA over DNA:DNA duplexes in favorable sequences. Second, R-loops, by absorbing negative superhelicity, partially or fully relax the rest of the DNA domain, thereby returning it to a lower energy state. In vitro transcription assays confirmed that R-loops cause plasmid relaxation and that negative superhelicity is required for R-loops to form, even in a favorable region. Single-molecule R-loop footprinting following in vitro transcription showed a strong agreement between theoretical predictions and experimental mapping of stable R-loop positions and further revealed the impact of DNA topology on the R-loop distribution landscape. Our results clarify the interplay between base sequence and DNA superhelicity in controlling R-loop stability. They also reveal R-loops as powerful and reversible topology sinks that cells may use to nonenzymatically relieve superhelical stress during transcription.

     
    more » « less